

φ-evo documentation

	Install φ-evo
	install Anaconda

	install the package

	Install gcc on windows

	Install gcc on mac osx

	Install pygraphviz

	run_evolution.py script

	Analyse notebook

	Test your installation

	Create a new project

	Presentation
	An algorithm overview

	Network components

	Population & Evolution

	Modelization & Integration

	Create a new project
	Build a network manually

	Run a simulation

	Restart an evolution

	Pareto evolution

	Simulation parameters
	Kinetic parameters (dictionary_ranges)

	Mutation parameters (dictionary_mutation)

	General simulation parameters (prmt)

	Restart parameters (prmt["restart"])

	Results and Analysis Tools
	Organization of the results

	Analysis Tools

	Notebook

	Examples
	Examples of projects

	Examples of seeds

	Hox pareto

	References

	A simple example: the lactose operon
	Description of the biological problem

	Implementation in the algorithm

	How to read and interpret results

	Create a new interaction
	Imports

	Define a new type of species

	Define the Methyl class

	Handling the mutation

	Bind the code to φ-evo

	Known Bugs
	Disabling scrolling bar in Analyse Run.ipynb

	phievo package
	Networks module

	PlotGraph

	Populations

	Analysis tools

Indices and tables

	Index

	Module Index

	Search Page

Install φ-evo

φ-evo relies on python>=3.5, pip, and c.

The software has been successfully tested on the three main operating
systems(windows,mac OSX, and GNU-linux) but we recommend using a
GNU-linux distribution(ubuntu) as it has been tested more thoroughly
and more regularly on this platform.

install Anaconda

The _phievo package depends on python>=3.5. If python is not already
installed on your computer, we recommend to install it by using the
anaconda distribution [https://www.continuum.io/downloads].

Among other things, anaconda provides the standard package manager of
python pip. Before anything, it is good to check that you are working
with the most recent version of pip:

pip install --upgrade pip

Note: When multiple versions of python are installed on the same
computer, you may need to specify the version of python or pip you are
using: python (pip) for python2 and python3 (pip3) for
python3. Make sure that the which pip and which python return
the right pip (and python) installation path. For simplicity we will use
pip in the following instructions.

Note: If you install packages for all the users of your computer,
you need to have admidistrator rights and use sudo before the pip
command. It can happens that your global and your local pip are not the
same. To make sure the administrator uses the right pip, run
sudo which pip. The installation instructions assume you do not need
to add sudo before pip.

install the package

With pip installed, the installation is straight forward, run:

pip install https://github.com/phievo/phievo/blob/master/dist/phievo-1.1.zip?raw=true

Install gcc on windows

Windows does not come with the gcc compiler installed but the free
software foundation provides a minimal distribution of the gnu softwares
for windows, it is called MinGW [http://mingw.org/].

Once you have downloaded mingw-get-setup.exe, run it. A selection
panel will open. We recommend you to install at least the two following
packages(the others are not relevant for φ-evo): -
mingw-developper-toolkit - mingw32-base

Choose the default directory.

After the installation is finished, update windows PATH so that it
knows where to look for the gcc command. Open a the command prompt
and run:

setx PATH "%path%;C:\MinGW\bin"

Note: gcc is distributed by other packages such as code blocks or
visual basics. In such case, you do not need to install MinGw. Just
upload you PATH so that windows knows where is the gcc compiler.

Install gcc on mac osx

OSX does not have the gcc compiler installed by default either. There
are different ways to install it. The fastest is probably via
homebrew [https://brew.sh/]:

brew install gcc

If gcc is not already installed on you system (via macports or
Xcode), homebrew’s gcc should be automatically in the system’s
PATH.

Install pygraphviz

pygraphviz is not included in the default dependencies of phievo
because it does not exist natively on windows and we wanted to publish a
version that that runs on all the systems. pygraphviz is used only to
display network layouts. If it is not installed, phievo will print a
warning and use networkx spring layout instead.

On max OSX, you have to use homebrew to install graphvix first :

brew install graphviz pkg-config
pip install pygraphviz

On GNU/linux, installing the dependencies varies depanding on the
distribution. We tested the following on debian and ubuntu

sudo apt-get install graphviz graphviz-dev pkg-config
sudo pip install pygraphviz

On other distributions, you want to find the equivalent of graphviz,
graphviz-dev, and pkg-config.

We found that sometimes on ubuntu the C linking to the graphviz library
does not work properly. The fix is to be more explicit on the linking
for the pip command:

sudo pip install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"

run_evolution.py script

An extra script
(run_evolution.py [https://raw.githubusercontent.com/phievo/phievo/master/run_evolution.py])
needs to be downloaded with the phievo package to start an evolution. It
is stored in the root of the phievo repository.

You can either manually download it or open a python terminal and run

>>> import phievo
>>> phievo.download_tools()

The former utility also downloads a jupyter notebook that can be used to
analyse the results of a simulation in current directory.

Analyse notebook

We provide a jupyter
notebook [https://github.com/phievo/phievo/blob/master/Analyse%20Run.ipynb]
at the root of the github
repository [https://github.com/phievo/phievo] to help with the
analysis of the runs. If you wand to run it, you will need to install
several extra python libraries, to help with this, they are writen in
extra.txt [https://raw.githubusercontent.com/phievo/phievo/master/extra.txt].

pip install -r https://raw.githubusercontent.com/phievo/phievo/master/extra.txt

Similarly to the
(run_evolution.py [https://raw.githubusercontent.com/phievo/phievo/master/run_evolution.py])
script, Analyse Run.ipynb is downloaded when you call the
phievo.download_tools() function.

The jupyter kernel is started with the following command

jupyter notebook

Usually it autmotically opens a new windows in your terminal in which
you need to select Analyse Run.ipynb. If the windows does not open,
it can be open manually by copy-pasting the url printed in your shell
after you ran the command in a wer browser.

When using the plotly package, you may find that the plots do dot
display well in the notebook (white square), the solution to this
problem is to increase the io rate allocated to the notebook by using
the NotebookApp.iopub_data_rate_limit option when starting jupyter:

jupyter notebook --NotebookApp.iopub_data_rate_limit=10000000000

Test your installation

To test that everything works properly, we recommend that you run an
example simulation. Several examples of simulations are stored in the
github
repository [https://github.com/phievo/phievo/tree/master/Examples]
Examples directory. You can download all the simulations by cloning the
repository with git:

git clone https://github.com/phievo/phievo.git

This will also download phievo’s code.

To download a single example there is a built-in tool that can be run in
a python shell:

>>> import phievo
Downloads run_evolution.py and Analyse Run.ipynb in the current directory
>>> phievo.download_tools()
Downloads an example project directory
>>> phievo.download_example("adaptation")

The function download_example allows to download one of the
following examples:

	adaptation

	somite

	hox

	hox_pareto

	lac_operon

	immune

	seed_adaptation

	seed_adaptation_pruning

	seed_somite

	seed_somite_pruning

	seed_lacOperon

	seed_lacOperon_pruning

	seed_hox_pareto_light

The examples starting with “seed_” keyword also contain the results of
the simulations. The results can directly be visualized in the Analyse
notebook.

After downloading an example project directory and the
run_evolution.py script you are all set to start an evolution.

|-- run_evolution.py
|-- Analyse Run.ipynb
`-- example_adaptation/
 |-- initialization.py
 |-- fitness.c
 |-- init_history.py
 `-- input.c

To launch the evolution, simply run

python run_evolution.py -m example_adaptation

Note: You can add the -c option
(./run_evolution.py -cm example_adaptation) to delete a Seed that
was created by a former run and prevents a new run to start. Be careful,
a deleted seed cannot be recovered.

If everything works correctly you should see the evolution starting.
When an evolution is running it displays regularly updates of its
current state in the terminal and a STOP.txt file is created at the
root of the project. The purpose of the STOP file is to have a quick
method to check on the current state of a run when it is launched as a
background task. When the STOP file is deleted, the run stops.

Create a new project

To start a new project, the best is to use an existing example as a
template and to modify the relevant parameters.

Similarly to the Analyse notebook, we also propose the Project
Creator.ipynb [https://github.com/phievo/phievo/blob/master/Project%20Creator.ipynb]
notebook to help with the creation of a new project.

jupyter notebook Project\ Creator.ipynb

Presentation

This section presents the basics element to understand the structure of
the algorithm and the role of the various python modules.

An algorithm overview

There is three main blocs in the algorithm that correspond to the three
libraries present at the root of the project.

	Networks: gathers all the elements to represent, modify and
simulate the evolving biological networks that are the indidividual
level of our population.

	Population_types: implements the so-called genetic algorithm and
its several variants through a Population class and its subclasses.

	AnalysisTools: gathers the tools used after the simulation to
analyse, represent and study the results.

Network components

Network (and its sub-class Mutable_Network) represents the
individual level of our evolutionary algorithm. Apart of the methods
used to implement the different operations, the main attribute is
graph, a networkx.MultiDiGraph object that stores the biochemical
network as a bipartite graph of Species (and TModule) on one side
and Interaction on the other. The organisation of the graph thus
relies on the networkx package [https://networkx.github.io/].

The subclass called MutableNetwork handles the mutations in the
Network

The deriv2 module is responsible for reading a Network’s
interactions and to generate a C file that will integrates the
differential equations simulating the species and then computes the
fitness of the network that will be used at the genetic algorithm level.

Species

Species is one of the two major components of a network. A species is a
protein that can have different types (Degradable, Phosphorylable,
etc.). Most of the time, those species will be added automatically by
the algorithm when handling the various interactions. For example when
two species are chosen to be part of a new protein-protein interaction,
a new species will be added to simulate the complex thus formed.

However, to manually build the initial network, you may want to add
species with some fixed properties. For this, you need to build a list
of lists containing the type name as a first element and the different
parameters (if any) must complete the list in a pre-defined order
(l_types in the example below). For instance a degradable species
comes with its degradation rate. Note that adding a single Species is
actually quite rare as they often came as a whole gene with a
CorePromoter and a TModule (see the TModule picture below).

l_types = [["Degradation",0.5],["Complexable"],["Output",0]]
mySpecies = my_Network.new_Species(l_types)
mySpecies = my_Network.new_gene(rate, delay, l_types, basal_rate)

But see the initiation.py file of an example to a complete
construction of a Network object.

Interaction

The Interactions, as suggested by its name, accounts for how species and
TModules interact. Examples of interactions are protein-protein
interactions, transcription factor regulations, etc. See the sections
below for various type of preimplemented interactions.

Note also that it is often necessary to implement new interactions
tailored for a specific task. (See Examples/immune/ for an example
of such new interactions.)

TModule

A TModule is the last type of network component. It corresponds to the
transcription part of a gene and is connected to the species it controls
via a CorePromoter interaction. In the φ-evo’s framework, a gene is thus
represented by three components: TModule, CorePromoter, and
Species.

[image:]

Uphill, the transcription factor species that regulate a gene are
connected to the Tmodule through TFHill interactions.

Population & Evolution

The evolution algorithm mimics Darwinian selection by simulating a
population where the individuals are in competition to pass their genome
to the next generation.

It first generates an initial population the size of which is defined by
the user by cloning an initial Network and from then follow cycles of
mutation, fitness computation and selection. Each cycle thus defines our
time step of evolution and will subsequently be called a generation.

Elite strategy

By default we choose to use the elite strategy because of its
robustness and its cheap computationnal cost. Thus, during the selection
step, the worst part of the population is deleted, while the fittest
half of the individuals are directly passed to the next generation.
Then, each of them is copied and this copy is mutated.

Note that this scheme automatically keeps the population size constant.
Moreover, it relies only on the rank of the individuals in the
population and not on the quantitative fitness. This makes it very
robust to the possible difficulties and failures of the fitness
implementation.

Pareto evolution

In the case where the fitness is composed of multiple components, it is
not obvious how to balance the different modules in the global fitness.
It may be interesting to have a multiple objective optimization where
all the components of the fitness have the same importance; only changes
improving one component without decreasing the others are considered as
an improvement.

For a fitness splited in \(N\) components:
\(F = \{f_1,f_2,...,f_N\}\). We say that individual \(i\)
dominates (strictly) \(j\) if and only if the fitnesses \(F^i\)
and \(F^j\) are such that:

\[\forall k\quad f^i_k\geq f^j_k,\quad (\exists k \quad f^i_k>f^j_k)\]

Clearly multiple objective optimisation does not result in one best
network in the end but to a population of highest rank networks called
the Pareto front. More information can be found on
Wikipedia [https://en.wikipedia.org/wiki/Multi-objective_optimization].

From a practical standpoint, the algorithm works similarly to the
genetic algorithm with a modified selection process. As in the genetic
algorithm, half of the population is passed to the next generation and
duplicated. Because the only classification criterion is the network’s
rank, the cutoff may occur in the middle of a set of equivalent network
since they have the same rank. In such a case the algorithm selects
randomly the networks with the cutoff rank to complete the set of
individuals passed to the next generation.

Results

During the evolution, the results are stored in separate folder for each
seed soberly called _Seed*/_, this folder contains three main type of
elements:

	log_? — are brute copy of the files used as input for this seed
(the correspondance should be obvious).

	Bests_?.net — is a pickle of the Network object with the best
fitness at the corresponding generation, this allows you to trace
back the evolution of the individuals in the population

	data.? — contains various data about the seed (mean fitness, times,
etc.)

	Restart_file.? — this shelve object contain a copy of the whole
population in case you want to restart the evolution after the
termination of the first run of the program.

Modelization & Integration

To simulate the dynamics of a species the program first needs to explore
the nodes and the interactions that are connected to it. Then it builds
the equations that govern the dynamic of its concentration. These
equations are then written as C code and integrated.

The following sections presents the predefined networks interactions and
there corresponding ordinary differential equations.

TModule and gene production

There exists two types of TF actions: activition and inhibition. Both
types are modelled using Hill functions but there their effects is
included differently to the global regulation. Only the maximum of all
the activations is accounted for whereas the inhibitions are
multiplicative. In some extend activation and repression work
respectively as OR and NOR logical operations.

Next the CorePromoter interaction adds a delay \(\tau_P\) to
accounts for the protein synthesis time. Practically, the algorithm
considers the state of the system at time \(t-\tau_P\) to estimate
the production of \(P\) at time \(t\).

The following configuration

[image:]

leads to the following equation:

\[\frac{d S}{d t} = \left(\max\left\{PR_S \times\max\left\{\frac{A_1^{n_{A1}}}{A_1^{n_{A1}} + h_{A1}^{n_{A1}}}, \frac{A_2^{n_{A2}}}{A_2^{n_{A2}} + h_{A2}^{n_{A2}}}, \ldots \right\},B_S\right \}\times \frac{h_{R1}^{n_{R1}}}{R_1^{n_{R1}} + h_{R1}^{n_{R1}}} \times \ldots \right)_{(t-d_S)}\]

__

In the above equation, the \(h\) and \(n\) parameters correspond
respectively to the Hill constant and coefficient. The \(PR\) is the
production rate of the protein in optimal conditions and \(B\) is
the basal rate(in case no activator is present). The overall production
is modulated by the repression.

Degradation

Every protein \(P\) labelled as degradable is degraded over time
with a rate \(\delta_P\). This

\[\frac{d P}{d t} = - \delta_P P\]

Phosphorylation

The phosphorylation is the addition of a phosphate group to a Species by
a kinase. It creates a new phophorylated species. The dynamics of this
mechanism is controlled by a hill function that accounts for the use of
the kinase by all the different species. In the case of of kinase that
catalyses the phosphorilation of two species \(S_1\) and
\(S_2\).

\[\frac{d S_1}{dt} = - \frac{d S_1^{*}}{dt} = k_p^1\frac{K \left(\frac{S_1}{h_1}\right)^{n_1}}{1+\left(\frac{S_1}{h_1}\right)^{n_1} + \left(\frac{S_2}{h_2}\right)^{n_2}} - k_d^1 S_1^{*}\]

\[\frac{d S_2}{dt} = - \frac{d S_2^{*}}{dt} = k_p^2\frac{K \left(\frac{S_2}{h_2}\right)^{n_2}}{1+\left(\frac{S_1}{h_1}\right)^{n_1} + \left(\frac{S_2}{h_2}\right)^{n_2}} - k_d^2 S_2^{*}\]

[image:]

Note that by default, there is no mechanism implemented for active
dephosphorylation so that they hapen with constant rates \(k_d^1\)
and \(k_d^2\).

Protein-Protein-Interaction (PPI)

The PPI interaction accounts for the complexation of two single proteins
into one complex.

[image:]

The rate is obtained from a mass-action dynamics:

\[\frac{d P_1}{dt} = \frac{d P_2}{dt} = - \frac{d C}{dt} = - \text{rate} = - k^{+}P_1P_2 + k^{-} C\]

with \(k^{+}\) and \(k^{-}\) being respectively the forward and
backward rate constants

Create a new project

This tutorial lists a series examples on how to perform common tasks
with φ-evo.

Build a network manually

Before even starting a simulation, let us build a network manually in
order to get familiar with the way they are encoded in the program. Most
of the code is written in python 1, let us call our first file
HowTo_manualNetwork.py is provided in the example directory.

Import libraries
from phievo.Networks import mutation
import random

Create a random generator and a network
seed = 20160225
g = random.Random(seed) # This define a new random number generator
L = mutation.Mutable_Network(g) # Create an empty network

We have created a first network, L, that can be used as a container
for the species and insteractions. For now L is still empty, we can
add a new species as follows

parameters=[['Degradable',0.5]] ## The species is degradable with a rate 0.5
parameters.append(['Input',0]) ## The species serves as an input referenced by the index 0 in the evolution algorithm.
parameters.append(['Complexable']) ## The species can be involved in a complex
parameters.append(['Kinase']) ## The specise can phosphorylate another species.
parameters.append(['TF',1]) ## 1 for activator 0 for repressor

Create a species and add it to the network
S1 is a reference to access quickly to the newly created species latter in the code
S1 = L.new_Species(parameters)

All the characteristics we want to associate with the species are listed
followed by their parameters. The list is then sent to the
new_Species function to create the species. This methods is used when
adding a external species (such as an input) that is not produced by the
network itself.

In most cases a species comes with its transciptional machinery
(Species + CorePromoter + TModule). The species and its related
componant are added via the new_gene function.

Similarly a PPI(protein-protein interaction) is added with the
complexation reaction and a phosphorylated species is added with the
phosphorylation interaction.

Adding these functions to a code would look like this

parameters=[['Degradable',0.5]]
parameters.append(['TF',1])
parameters.append(['Complexable'])
TM0,prom0,S0 = L.new_gene(0.5,5,parameters)

parameters=[['Degradable',0.5]]
parameters.append(['TF',0])
parameters.append(['Complexable'])
TM1,prom1,S1 = L.new_gene(0.5,5,parameters)

parameters=[['Degradable',0.5]]
parameters.append(['TF',1])
parameters.append(['Phosphorylable'])
TM2,prom2,S2 = L.new_gene(0.5,5,parameters)

parameters=[['Degradable',0.5]]
parameters.append(['TF',0])
TM3,prom3,S3 = L.new_gene(0.5,5,parameters)

Add complexation between S0 and S1.
parameters.append(['Kinase'])
ppi,S4 = L.new_PPI(S0 , S1 , 2.0 , 1.0 , parameters)

Add a phosphorylation of S2 by S4
S5,phospho = L.new_Phosphorylation(S4,S2,2.0,0.5,1.0,3)
S5.change_type("TF",[1]) # Note this is already the default value for a phosphorilated species

Regulate the production of S1 by S3 and S5
tfhill1 = L.new_TFHill(S3, 1, 0.5, TM1,activity=1)
tfhill2 = L.new_TFHill(S5, 1, 0.5, TM1,activity=1)

To display the layout of the former network, the program provides draw
function :

L.draw()

Run a simulation

A φ-evo project is stored in a directory named as the project.

mkdir lac_operon

It contains all the configuration files of the project

	initialization.py (name must start with “init”): Contains the
initialization parameters, the path to the C files and optionally an
inial network. If the former is not described in the initialyzation
file, it will be generated randomly.

	a fitness C file code used to compute the fitness. After an
integration, the dynamics is stored in an array
history[SPECIES][TIME][CELL]. You need to create a custom set
function that analyse this array. In the end, the function
treatment_fitness should print the fitness of the network.

	An init history file that contains the code that sets
history[SPECIES][t=0][CELL] wrapped in a function called
init_history.

	An init input file creates an input function. The input function is
called at every time step to modify the history if necessary.

initialization.py

This file stores the informations about the evolution such as the ranges
of variation for the parameters, the mutation rates, the paths to the C
files, or the algorithm parameters.

The dictionary dictionary_ranges sets the range of values a parameter
can take. If only one value Max is given, then the the range is [0,Max].
To specify the the minimal value for a parameter, you have to provide an
array [Min,Max]

The hill coefficient of a TFhill can varry between 1 and 5.
dictionary_ranges['TFHill.hill']= [1., 5.0]
The rate of a TModule can varry between 0 and 2.
dictionary_ranges['TModule.rate']= 2

The dictionary cfile contains the path of the C files

cfile['fitness'] = fitness.c
cfile['init_history'] = init_history.c
cfile["inputc] = input.c

The dictionary dictionary_mutation contains the rates at which a
mutation in the network appears. Note that the alorithm gathers the
rates provided and normalizes them in order to have an average of one
mutation per new generation during the evolution.

Rate of appearance of the new transcription factor
dictionary_mutation['random_gene(\'TF\')']=0.02

The prmt dictionary contains the parameters related to the functioning
of the program and the algorithm.

Number of integration step in the Euler integrator
prmt['nstep'] =3000
time step during the integration
prmt['dt'] = 0.05
Setting prmt['restart']['activated'] to False allows to start a fresh simulation
prmt['restart'] = {
 "activated": False,
 "freq": 50 # Generation frequency for saving the complete population
}
Define the compiler (gcc by default)
prmt["compiler"] = "g++"

prmt['langevin_noise'] = 0 # Intensity of the langevin noise for stochastic simulation
prmt['multipro_level'] = 1 # Use multiprocess if one 1. If 0, singlethread.
##

You may also specify the type of output you want and to prevent deleting
species with a specific tag:

list_unremovable=['Input','Output']
list_types_output=['TF']

We can choose an intial network to start the simulation with. This is
done through the init_network function. The construction of the
initial network follows the steps presented in Build a network
manually.

fitness.c

This file contains two required C functions fitness and
treatment_fitness. The first function function computes the fitness
each individual trials. Once all the trials have been analysed by
fitness, the treatment_fitness function combines the different
fitnesses (ex: taking an average, sum, etc.) and prints the summary
fitness to the shell. The former fitness is read by the python algorithm
and used to classify the networks among the other networks of the
population.

You may add more analysis functions and to redefine fitness and
treatment_fitness as long as it prints the network’s fitness and has
the following prototype:

static double result[NTRIES];

void fitness(double history[][NSTEP][NCELLTOT], int trackout[],int trial)
 {
 result[trial] = 0;
 }

void treatment_fitness(double history[NGENE][NSTEP][NCELLTOT], int trackout[])
 {
 for(trial=0;trial<NTRIES;trial++)
 total_fitness += result[trial];
 printf("%f",total_fitness)
 }

The trackout lists the indexes of the outputs in the networks. You
can also decide to use the global list trackin which contains the
indexes of the ouputs.

init_history.c

Before every integration, the algorithm reads the array
history[NGENE][0][NCELLTOT] to set the initial conditions of the
run. You can use the init_history.c file to edit the first time step,
this way it will be used as a initial condition.

Note that you can be more specific by using the two lists trackin
and trackout that contain the indexes for the inputs and outputs
respectively.

void init_history() {
 int ncell,n_gene;
 for (ncell=0;ncell<NCELLTOT;ncell++){
 for (n_gene=0;n_gene<SIZE;n_gene++){
 history[n_gene][0][ncell]=0;
 }
 }
 }

input.c

Sometime it is necessary to add artificial inputs during an integration.
This is done via the input function. The input function is called at
every time step and for every cell before computing the species
derivatives. Since the derivatives for the species at time t are
computed based on the values history[NGENE][t][NCELLTOT], you can
use input to modify the history array.

void inputs(int time,int cell,int trial){
 ...
}

To get more precise informations, we recommand you to have to look at
how Examples/lac_operon/ project is built.

Launching a run

The program is launched with the run_evolution.py script:

python run_evolution.py -m lac_operon/

The script loads the parameters and launches the run.

run_evolution.py should be placed in the same project directory as
the project directory:

|
 --- run_evolution.py
 --- (Analyse Run.ipynb)
 --- example_project/
 |
 --- initialization.py
 --- fitness.c
 --- init_history.c
 --- input.c

Note: run_evolution.py is not installed with phievo and must be
downloaded manually from
here [https://raw.githubusercontent.com/phievo/phievo/master/run_evolution.py]
or by running the command phievo.download_tools() in a python shell.

To restart a new run, one must provide the # of the run (or seed
index). By default, the run number is 0. To prevent errasing a run by
mistake, the code will not start if you do not provide a new run number
in the initialization file. You can also tell the program explicitly to
clear the Seeds with the “-c” or “–clear” option.

python run_evolution.py -cm lac_operon/

Restart an evolution

Every k generations, the algorithm saves a complete generation in a
file called Restart_file in the Seed’s directory. If interrupted, you
can use this Restart_file to restart from a backup generation. You
can set the restart generation in the initialization file:

prmt['restart'] = {
 "activated": True, ## Activate restart
 "seed": 0, ## Index of the restart seed
 "kgeneration": 50, # Generation where to restart the algorithm
 "same_seed": True,
 "freq": 50 # Keep the same saving frequency
}

When the seed and the generation is not set or None, φ-evo will uses
the last backup-ed generation in the seed with highest index.

Pareto evolution

To start a pareto(multi-objectives) optimization with φ-evo, extra
paremeters need to be defined in the initialization file:

prmt['pareto']=True ## Activates pareto evolution
prmt['npareto_functions']=2 ## Number of fitness components
prmt['rshare']=0 ## Radius under which networks are penalysed for being too
 ## close on the pareto front

	1

	The front interface is coded in python (version >3.5). But for
efficiency reason, the core integration is coded in C.

Simulation parameters

This sections presents the different parameters that can be set in the
initialization file.

Kinetic parameters (dictionary_ranges)

The kinetic parameters are specific to a type of interaction or a type
of species. They are stored in the dictionary_ranges dictionary. One
can define the range over which they can vary by setting the its range
with a size 2 list (if the minimum is 0, the range can be set with a
float corresponding to the maximum).

In the example of a Degradation interaction, the range of variation
of the rate of degration is set with

dictionary_ranges["Degradation.rate"] = 0.0

Mutation parameters (dictionary_mutation)

The mutation parameters define the rate a which a given mutation occurs.
Note that the evolution rescale the generation time so that a network
undergoes an average of one mutation per generation. The mutation
parameters are defined in the dictionary_mutation dictionary.

A new mutation function is defined when creating a new
interaction. Each new mutation can have its
own rate defined.

Examples:

	dictionary_mutation["random_gene()"]: Rate at which
random_gene() mutation is executed (with default settings).

	dictionary_mutation["random_gene(type = 'TF')"]: Rate at which
random_gene() mutation is executed with the parameter type
equal to “TF” (it creates a species with a tag “TF” corresponding
to a transcription factor).

General simulation parameters (prmt)

The general simulation parameters are stored in a dictionary called
prmt:

	Number of seeds (nseed): Number of independent evolution to
simulate.

	First seed (firstseed): Index of the first seed. This index is
also used to seed the random number generator.

	Number of generations (ngeneration): Number of generation to
simulate in each independent evolution.

	Number of cells (ncelltot): Number of cells in the organism.

	Population size (npopulation): Number of network in the
population.

	Number of neighbors (nneighbor): Number of neighbors cell has.

	Fraction mutated per gen (frac_mutate): Fraction of networks in
the population to mutate at every generation.

	Number of Inputs (ninput): Number of species with an inputs (with
an input tag) a network should have.

	Number of Outputs (noutput): Number of species with an outputs
(with an output tag) a network should have.

	Number of trials (ntries): When a fitness depends of a network’s
initial conditions or in the presence of Langevin’s noise, it is
useful to run several independent kinetic integrations. ntries
determines the number of integrations to run. Note that in the case
the initialization of each trial should be done with the
init_history function
and the agregation(e.g. averaging) of the fitnesses coresponding to
each integration is done with the
treatment_fitness function.

	Time step dt (dt): Size of an integration time step in the Euler
algorithm.

	Number of time steps (nstep): Number of integration time step in
the Euler algorithm.

	Langevin noise value (langevin_noise): Level of the langevin
noise in a stochastic simulation. When 0, the integrations are
deterministic.

	Gillespie generation time (tgeneration): The computation of the
next mutation follows a Gillespie algorithm. tgeneration defines
the initial time, then the time tgeneration is updated to have
roughly one mutation in frac_mutate of the networks.

	Recompute networks (redo): Should the networks that do not change
in from a generation to the other be re-integrated ti compute the
fitness?

	Pareto simulation (pareto): Should we run a Pareto integration?

	Number of pareto functions (npareto_functions): Number of pareto
functions defined?

	Pareto penalty radius (rshare): This parameter prevents a network
from being dominated by a networks with fitnesses that fall too close
to it current position in the fitness space. Increasing rshare
helps to explore a larger portion of the fitness space. Warmflash et
al
2012 [http://iopscience.iop.org/article/10.1088/1478-3975/9/5/056001/meta].

	Multiple threads (multipro_level): Should the algorithm run in
parallel?

	Generation printing frequency (freq_stat): During a simulation
the algorithm regularly prints informations about its current state.
freq_stat defines the number of generations between two prints.

Restart parameters (prmt["restart"])

To restart a simulation either after it has been stopped or from a
specific seed and generation one can configure the restart parameters.
The parameters are hosted in a sub-dictionary or prmt,
prmt["restart"]:

	prmt["restart"]["activated"]: Activate restart

	prmt["restart"]["freq"]: Frequency at which a complete generation
is saved.

	prmt["restart"]["kgeneration"]: Generation at which to restart
the algorithm

	prmt["restart"]["seed"]: Seed at which to restart the algorithm

	prmt["restart"]["same_seed"]: Restart with the same seed

More information is available on the (restart an evolution
section)[create_new_project.html#restart-an-evolution].

Results and Analysis Tools

φ-evo has a module dedicated to the analysis of the results. The results
are stored in a Simulation object that contains a set of method that
give a quick access to the most relevant observables of a run. To start
analyzing the evo_dir project, you need to create a Simulation
object associated to it.

from phievo.AnalysisTools import Simulation

sim = Simulation("evo_dir")

From there it is pretty straight forward to explore the architecture of
the results. A simulation contains Seeds which themselves contain
Networks. In order not to overload the memory, the Seeds only store a
link to the networks. As an example, here is how you would load the best
network for generation 350 in the seed number 2:

sim = Simulation("evo_dir")
best_net_2_350 = sim.Seeds[2].get_best_net(350)
Equivalent to
sim = Simulation("evo_dir")
best_net_2_350 = sim.get_best_net(2,350)

Organization of the results

If you want to understand why the Simulation object is organized the
way it is and how to go beyond its possibilities, you need to have an
idea of how φ-evo stores the results of a simulation.

By default, for every generation g only one Network is stored using
pickle in a file labelled Bests_g.net. When the simulation has only
one fitness objective, this network is the one with the best fitness in
the population. However when the evolution is run using a multiobjective
criterium (like pareto optimisation), the best net is chosen randomly
among the network of rank 1.

The former storing method limits the disk space usage. However you might
want to store the whole population either for restarting the algorithm
from a given generation or to analyze every member of the generation. To
add this feature, you can specify a storing period by setting the
prmt['restart']['freq'] parameter in the initialization file before
launching the simulation. For example, if you set it to 50, the complete
population will be stored every 50 generations in a python shelve
named restart_file.

Other files created:

	data is a quick access shelve file to certain informations stored
as lists at the following keys:

	generation: index of the generation

	fitness: fitness of the best network

	n_species: number of species in the best network

	n_interactions: number of interaction in the best network

	parameters is a copy of the parameter dictionnaries (defined for
the non default in the initialization file) that were used during the
simulation.

	log_#.c Copy of the input, fitness, history, etc. c files
used for the simulation.

	log_init_file.py Copy of the init file used for the simulation

Analysis Tools

In this section we will explore the built-in functions that are bound to
a Simulation object.

custom_plot

Plots two observables one against each other for a given seed. The
available observables are the ones contained in the data file
(“generation”, “fitness”, “n_species”, “n_interactions”).

sim.seeds[1].custom_plot("generation","fitness")
Similarly you can use the shortcut
sim.custom_plot(1,"generation","fitness")

plot_fitness

There also exists a method to plot the fitness directly:

sim.seeds[1].show_fitness()
or
sim.show_fitness(1)

get_best_net

Get the best net found in a given generation (the function reads the
Bests_g.net file and return the Network object)

bestnet_g5_seed3 = sim.seeds[3].get_best_net(5)
or
bestnet_g5_seed3 = sim.get_best_net(3,5)

get_backup_net

If you want to extract a network from a entirely stored generation, you
can use get_backup_net. Be careful though, not every population is
stored in the restart_file. You can use the
stored_generation_indexes to check which generation has been stored.

net8_g50_seed3 = sim.seeds[3].get_backup_net(50,8)
Or
net8_g50_seed3 = sim.get_backup_net(3,50,8)

stored_generation_indexes

The stored_generation_indexes is method that returns the list of
stored generations.

list_stored = sim.seeds[1].stored_generation_indexes()
Or
list_stored = sim.stored_generation_indexes(1)

Read a network from the pickle file

The simulation stores the best networks of every generation in the name
Bests_#.net. This is only a pickle file and can be read manually
using the pickle library:

import pickle

with open("Bests_#.net","rb") as net_file:
 net = pickle.load(net_file)

Or using the φ-evo function:

import phievo

phievo.read_network("Bests_#.net")

Running a network’s dynamics

By construction φ-evo does not allow to quickly run the dynamics of a
network. Because the dynamics is computed in C (for performance reason),
a python Network object does not have a method that directly returns the
derivative at a given state of gene quantities. However φ-evo has the
method run_dynamics to symplify the run of a dynmics for a given
network based on the history and inputs defined in init_history.c and
input.c respectively.

net = sim.get_best_net(3,5)
dyn_buffer = sim.run_dynamics(net=net,trial=1)

You can specify the number of trial you want to run (if the dynamics is
stochastic for example). The buffer returned by the function is a
dictionary where the “time” and “net” keys give you access to the time
vector and the network used for the run respectively. The other keys are
the index of the trial for which you want to access the data. Note that
the buffer is also stored in the Simulation.buffer_data, the latter
is erased every time you run a new set of dynamics for Simulations.

Plotting the results of a dynamics

The simulation object allows you to plot the two results you would like
to see after running a dynamics:

	The time course of the genes in a given cell with Plot_TimeCourse

	The evolution of the genes along the system at a given time point
with Plot_Profile

sim.Plot_TimeCourse(trial_index=1,cell=1)
sim.Plot_Profile(trial_index=1,time=1)

Draw a network’s layout

The network object contains a function to draw the layout of its gene
interactions:

net = sim.get_best_net(3,5)
net.draw()

the option edgeLegend makes appear all the ids of the different
species and interactions:

net.draw(edgeLegend=True)

Modifying an existing network

You can easily delete an interaction or a species from an existing
network once you know its id through calling delete_clean and
specifying the id and the type of the node to remove:

net.delete_clean(id=2,target='interaction')
net.delete_clean(id=5,target='species')

delete the interaction \(2\) and species \(5\) respectively.

To modify a precise node, you can access it with the function
get_node and then modify it

my_species = net.get_node(id=2,target='species')
my_species.degradation = 1.0

will set to \(1\) the degradation rate of species \(2\).

Storing and retrieving network

Once modified, you can store the resulting network in a pickle with:

net.store_to_pickle('my_file.net')

and read it later with:

net = phievo.read_network('my_file.net')

Note that the net extension is present only for readibility.

Notebook

To facilitate the use of the former functions, φ-evo as a class
Notebook that is used to run them in a jupyter
notebook [https://jupyter.org].

All the functions described previously can be used directly in a jupyter
notebook but the Notebook class improves the usability by handling the
dependencies between widgets. For instance you want the module in charge
of plotting a network’s layout to be disabled as long as a Seed and a
Network have not been selected.

A Notebook object serves as a container for all the available modules
you can use in the jupyter notebook. A module contains the material to
handle a cell: its widgets, some update functions and a display function
that displays the widgets in the jupyter notebook. In the end, the user
only needs to run myNotebook.myModule.display() to create a jupyter
elementary app in a cell. Then the module should be able to handle the
expected inputs from the user.

Creating a custom module

Every module of contained in the Notebook inherits from the
CellModule class. The latter is a minimal template used to constrain
the requirements a module must have:

	__init__(self,Notebook) : The init function takes the Notebook
it is contained in as an argument.

	update(self) : If the module has dependencies, this function must
be defined. When dependency is updated, this function is called.

	display(self): The function must be redefined to display the
widgets and to handle the relation between them.

__init__

This is the function where you define the different widgets for the
module. It is also here that you define the dependencies of the module
or create a new ones. The dependencies system allows communication
between different CellModules.

Inform the notebook that MyModule depends on the Seed
self.notebook.dependencies_dict["seed"].append(self)
Creates a dependencies
self.notebook.dependencies_dict["dep_name"] = []

Note that if you create a new dependency, you should make sure that you
also handle the updates when the dependency changes:

for cell in self.notebook.dependencies_dict["dep_name"]:
 cell.update()

update

Every module, particularly those with dependencies, should have an
update function. This is the function to call when the dependency is
changed. The update function can do whatever you want but mostly its
purpose is to unable/disabled the widgets when a dependency is changed
or to reset their options.

In Addition to the self.notebook.dependencies_dict, a module can
access the dictionnary self.notebook.extra_variables to pass values
between CellWidgets.

display

The display function is here to contain the interaction and display code
you would normally put in a jupyter notebook to handle the communication
of the widgets with the functions.

The philosophy of the CellModule is to create an elementary app in
charge of one action (plotting a curve, setting the seed, etc.). Using a
module’s display method in a cell gives access to the app at this
location.

Other functions

The update and dispay functions are usually not enough to run the
CellModule. You will need to define custom methods for your module to
handle the widget interactions(for instance, what happens when a widget
is clicked?).

Example: DisplayFitness

Here is a little practical example on how to include a custom
CellModule that displays the best fitness of the selected generation
when the button is clicked.

Create a module file NB_Module.py and import the Notebook module and
some widget libraries:

from phievo.AnalysisTools.Notebook import Notebook,CellModule
from ipywidgets import interact, interactive, widgets
from IPython.display import display

Then create the CellModule object:

class DisplayFitness(CellModule):
 def __init__(self,Notebook):
 super(DisplayFitness, self).__init__(Notebook)
 self.button = widgets.Button(description="Display fitness",disabled=True)
 self.display_area = widgets.HTML(value=None, placeholder='<p></p>',description='Fitness:')
 self.notebook.dependencies_dict["seed"].append(self)
 self.notebook.dependencies_dict["generation"].append(self)
 self.notebook.dependencies_dict["project"].append(self)
 def update_display(self,button):
 """
 Custom function that handles the button click and wrtie the fitness in the HTML widget.
 """
 seed = self.notebook.seed
 gen = self.notebook.generation
 fit = str(self.notebook.sim.seeds[seed].generations[gen]["fitness"])
 self.display_area.value = "<p>{0}</p>".format(fit)
 def update(self):
 """
 Clear the HTML text and when the seed or the generation is updated.
 """
 if self.notebook.sim is None or self.notebook.seed is None or self.notebook.generation is None:
 self.button.disabled=True
 else:
 self.button.disabled=False
 self.display_area.value="<p></p>"
 def display(self):
 """
 Display the button and the display area on one row.
 """
 self.button.on_click(self.update_display)
 display(widgets.HBox([self.button,self.display_area]))

Save the file and open the notebook to associate the newly created
module to a notebook object.

...
from phievo.AnalysisTools.Notebook import Notebook
import NB_Module

notebook = Notebook()
setattr(notebook,"display_fitness",NB_Module.DisplayFitness(notebook))

Now the display_fitness module can be used as any other CellModule by
creating a new cell and running:

notebook.display_fitness.display()

A copy of the
NB_Module.py [https://raw.githubusercontent.com/phievo/phievo/master/Examples/NB_Module.py]
file is available in the Examples/ directory.

Examples

φ-evo provides a series of examples of project and already run seeds.

Examples of projects

The example of projects are stored in the
Example [https://github.com/phievo/phievo/tree/master/Examples]
directory of the phievo package:

The function download_example allows to download one of the
following examples:

	adaptation 1

	somite 2

	hox 3

	hox_pareto

	lac_operon

	immune 4

	minimal_project

import phievo
phievo.download_example("adaptation")

This command creates a project directory example_adaptation at your
current path. The project contains all the configuration files required
to start an evolution.

Examples of seeds

Because some simulation can take some time to run, we provide the result
seeds we used to generate the figure of the paper:

	seed_adaptation

	seed_adaptation_pruning

	seed_somite

	seed_somite_pruning

	seed_lacOperon

	seed_lacOperon_pruning

	seed_hox_pareto_light

To download the result of a simulation on your computer, you can use
phievo:

import phievo
phievo.download_example("seed_adaptation")

The project downloaded can be analysed using the Analyse Run.ipynb
notebook.

Hox pareto

The complete simulation for the Hox Genes takes a lot of space, only a
portion of the original results is accessible through phievo.

You can manually download the complete simulation
here [https://mcgill-my.sharepoint.com/personal/adrien_henry_mail_mcgill_ca/_layouts/15/guestaccess.aspx?docid=0f1beb049ce8d4a648261a691f3116cd3&authkey=AUsBUDDWzFpkWDjGIo6n5X4].

References

	1

	François P, Siggia ED. A case study of evolutionary computation of
biochemical adaptation. Physical Biology.
2008;5(2):26009. [http://iopscience.iop.org/article/10.1088/1478-3975/5/2/026009/meta;jsessionid=63E2805FAE2CE62F041C2DE212DDB0C1.ip-10-40-1-105]

	2

	François P, Hakim V, Siggia ED. Deriving structure from evolution:
metazoan segmentation. Molecular Systems Biology. 2007
Dec;3:9. [http://msb.embopress.org/content/3/1/154.long]

	3

	François P, Siggia ED. Predicting embryonic patterning using mutual
entropy fitness and in silico evolution. Development (Cambridge,
England).
2010;137(14):2385–2395. [http://dev.biologists.org/content/137/14/2385]

	4

	Lalanne JB, François P. Principles of adaptive sorting revealed by
in silico evolution. Physical Review Letters. 2013
May;110(21):218102. [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.218102]

A simple example: the lactose operon

Description of the biological problem

The lactose operon is one of the most studied example in the regulation
of proteins production. In Escherichia coli, the operon 1 encodes
three different genes named lacZ, lacY and lacA from which the two
firsts are the most importants. LacZ codes for a protein that hydrolizes
lactose to produce glucose and galactose, which are themselves used by
the cell as carbon sources. LacY encodes a permease, a protein which
pumps the lactose into the cell. Both of these proteins need to be
synthesized by the cell to use the lactose as an energy source, but as
this is costly, and less efficient than using the glucose directly, the
cell manages to produce them only in presence of lactose and in absence
of glucose.

[image: lac_operon_presentation]
Figure 1: Scheme presenting the main elements of the lactose operon along the DNA strain (top), and the state of the operon through several external conditions (bottom). Published on Wikimedia [https://commons.wikimedia.org/wiki/File:Lac_operon-2010-21-01.png] by G3pro and Tereseik.

Cells have thus designed a logical gate, schematically shown in Figure 1 ,
to compute the binary function: lactose and
no glucose that controls the expression of the whole operon. The
biological strategy is the following: near the operon, the gene lacI
encodes a repressor of the operon which is constitutively expressed so
that by default, the operon is turned off. When lactose is present in
the medium, a closed form, the allolactose is also present and will bind
to the lacI repressor, thus impeding it to block the operon. It is now
possible to expressed the operon but there is still no activation. The
activator, the CAP protein, is indeed in an active form only in the
presence of cAMP which is produced in absence of glucose 2. As long
as glucose is present, the operon is still silent and it is only when
glucose become rare that cAMP goes high, thus activating the CAP protein
which activate the operon and thus the production of the needed
proteins.

Hereafter, we will run our genetic algorithm to optimize a function
close from the logical gate corresponding to the lac operon, that is:
\(x,y \mapsto x~\&~\neg~y\) (\(x~\text{nand}~y\)), the link with the biology of the real lac operon would
nonetheless ask more work than will be presented here.

Implementation in the algorithm

Remark

All files, functions and variables names along with terminal commands
will be printed using the LaTeX environment verbatim and display with
this particular font.

Two mains questions need to be answered in order to configure the
algorithm for a particular problem. What? and How? : What is the precise
function we need to optimize in order to describe the problem? and How
the solution is allowed to be found by the algorithm? The first will be
mainly described by the C code files like init_history.c and
fitness.c while the second will be solved through the tuning of the
various parameters in the so called init*.py file.

The init_history.c file describes the form of the input(s) that will
be feed into the network. This is done through the construction of the
double array isignal[time][n_cell][n_input] which indicates the
concentration of the various input with respect to the time and cell.

In our case, we have two inputs that will represent the concentration of
glucose and lactose and will be taken as binary functions (each sugar
has a concentration of \(0.0\) or \(1.0\)) which follow a random
sequence of presence and absence, the time being spent in each state
uniformly drawn between \(10\) and \(60\) seconds (see
figure [fig:response_lo]).

The fitness.c file intend to process the output of the integrator
which is rounded up in the double array named history indexed in the
following way: history[Species][Time][Cell]. The variables
trackin and trackout keeps in memory the label of the inputs and
outputs species. The fitness is directly printed out by the
treatment_fitness function. (Note however, that
treatment_fitness is a void, fitness is passed with the
printf("%f",fitness); statement.)

For lac operon simulation, each try of the integrator is treated
independantly and follow the time course of the input and output to
determine the times at which production is needed (that is when there is
lactose and no glucose) and the concentration of the output at that
time. We then have chosen to compute the mutual information 3 between
\(\text{lactose}~\&~\neg \text{glucose}\) and the concentration of
the output.

Finally, the init*.py file indicate the mutation rates of the
different interactions, the number of networks in the population, the
number of generation of the simulation, the initial network from which
we want to start and so on.

In the case of the lac_operon, we will ask the algorithm to use only
protein-protein interaction (PPI) and repression/activation of gene
(TFHill) and put to zero the parameters indicating the appearance of
other interactions, for example:

random_Interaction('Degradation') = 0
random_Interaction('Phosphorylation') = 0

which control the rate at which new degradations and phosphorylations
are added to the network to be probed by the evolution.

Each of this file has to be put in a single folder (in our case
lac_operon/) in order to be found by the algorithm. Evolutionary
procedure is now simply launched by running the

python run_evolution.py -m lac_operon

command line while in the main folder. The algorithm will now display a
lot of more or less important stuff in your terminal. The most
interesting are the generation number which indicate at which point of
your simulation you are. When accustomed to it, the Best_fitness is
an interesting variable to look at to know if the condition you defined
actually allow the algorithm to find valid solution for the problem.
Finally, every line starting by ERROR needs of course your special
attention.

[image: p2_response]
Figure 2: Detailed response of the network presented in Figure 3 A, colors correspond between the two figures. Orange shades indicate the time at which response is waited.

A word about fitness

In order for the evolutionary procedure to give meaningful results, a
special attention need to be given to design a proper fitness function.
There is several reasons for this particular importance but the main one
is that the algorithm will only try to solve the exact problem you have
defined – i.e. minimize the fitness function you have provided – which
is usually different from the actual task you have in mind.

For example, one of the solution proposed by the algorithm for the
lac_operon fitness proposed earlier (the mutual information between the
output concentration and the
\(\text{lactose}~\&~\neg \text{glucose}\) function) was to use
lactose as a weak activator of the output and glucose as… a strong
activator of the output! When looking at the time course of the output
concentration, it makes plain sense because the concentration is near
zero when there is no sugar, goes to one when there is only lactose and
saturate around two when there is either glucose only or when both
sugare are presents. Thus if the concentration is around one you know
that you have lactose and no glucose. You can extract the whole
information about the \(\text{lactose}~\&~\neg \text{glucose}\)
function from the output concentration which is the task we ask for,
even if the answer was quite surprising.

This also mean that you will often want to modify your fitness function
after a first bunch of runs to be more explicit or to try a different
fitness function. To avoid being rapidly lost between your different
simulation, you can look at the Seed*/log_fitness.c file for a
reminder of the fitness used at this time.

A second remark about fitness is that the function should goes smoothly
from the low fitness landscape to the region you want to explore, that
is the fitness function should already rewards the first steps toward
the solution. Otherwise, the algorithm will be stuck in the low level
region and cannot even start to optimize. This question covers a broad
range of litterature both in evolutionary biology and genetic algorithm
computer science around the fitness-landscape shape question with
suggestive names such as mount Fuji, house of cards or golf-course. It
is usually not a big deal but could bring you some surprise if you don’t
keep it in mind.

How to read and interpret results

Now that your computer has run several simulations it is time to analyse
them to decipher the output of the evolutionary algorithm. The first
thing to look at is the time course of the fitness for several runs, to
show the fitness of the first run, you can either use the
Analyse Run notebook or use the Simulation class.

Make sure to check several runs to know the typical fitness of a
successful or failed run, this will discard the cases where the
evolutionary algorithm has been stuck and doesn’t have enough time to
converge.

To study a particular network, you can now type network(500) if you
want to display the state of the best network in the population at
generation \(500\) (the end of the simulation given our init*.py
files). It may be small and concise but usually it’s not, evolutionary
procedure tends to accumulate a lot of uninteresting interactions and
species – the famous DNA junk? –that may be ignored. Anyway, this is the
raw result of the evolution.
It will print out the file directory where the network
has been saved for later analysis.

You can from there read and write network (with the read and write
function), compute the fitness (with the fitness function) and even
look at the time course of the species for a particular realisation of
the fitness computation. If net is your network, just type
fitness(net, plot=True). You can also plot a network using
net.draw().

Finally, you can also add homebrew function to analyse your evolutionary
result by adding a analyse.py file in the project folder. It will be
imported with analyse_network through the name spec.

[image: p2_response]
Figure 3: Pannels A. and B. shows two typical topologies of the final result of the algorithm trying to optimize our mutual-information fitness. In both pannel, inputs are species \(0\) (glucose) and \(1\) (lactose) (down-triangle) and output is the up-triangle. A. Both sugars regulate positively the output, but the glucose also form a dimer with it thus impeding the response. The time course of this network is displayed in Figure 2. B. Here a single species (S2) can form two complexes, one very strongly with the glucose (S4), and another weaker with the lactose (S3). The former complex being the output.

In our case, out of 10 runs, 80% ended on 2 main different topologies
(after pruning) both performing correctly, that is the fitness plateau
around \(-0.8\) on a scale of \(0\) to \(-1\). Four
correspond to the network of Figure 3 -A while four
other looks like the one in Figure 3 - B. I let up to
you the biological interpretation of these results 4 but the first
obvious feature is the uniformity of the solution. Nearly all the
successfull runs show very similar patern indicating that the biological
grammar available actually imposes strong constraints on the possibles
solution to a particular problem.

Geometry

New interactions

	1

	In genetics, an operon is a functioning unit of DNA, it designates a
cluster of genes under the control of a single promoter.

	2

	For curious reader, the reason why, when energy tends to rarify, the
cell suddenly produces an extraodinary amount of seemingly useless
proteins is still an active question!

	3

	The mutual information of two random variables is a way to quantify
the information I can extract about one variable by measuring the
second.

	4

	Just a hint, for case B it seems to me that species 2 should be
considered as the DNA strain!

	5

	As a particular example, suppose you want to buy a chair. You want it
comfy, robust and cheap, if you can have more comfort without
decreasing robustness nor increasin price… that’s better, but between
the cheap one and the costly but better, it is ultimately a matter of
taste.

Create a new interaction

φ-evo allows you to add a custom interaction that is not available in
the default list.

To do so you need to write an interaction file.

To make make the explanation clearer, we will explain how to build a new
interaction on a real example of a methylation interaction.

The methylation adds a methyl group to a species \(S\). The
methylated species is denoted with a \({}^{*}\) symbol:

\[S \leftrightarrow S^{*}\]

We choose the simplest kinetics for this reaction:

\[\frac{d S^{*}}{d t} = -\frac{d S}{d t} = k_f S - k_b S^{*}\]

Let us start by creating the Methyl.py in a project directory.

Imports

Every interaction depends on the following φ-evo modules:

	classes_eds2: for the core structure of the intaction

	mutation: to handle mutation

	deriv2: to explain how to generate the C code associated to the new
mutation

In Methyl.py

from phievo import __silent__,__verbose__
if __verbose__:
 print("Execute Methyl (Interaction Template)")

from phievo.Networks import mutation
from phievo.Networks import deriv2
from phievo.Networks import classes_eds2
import copy

Define a new type of species

Only methylable species can be methylated. For now φ-evo does not know
how to create a methylable species and what are its characteristics.
There should be a few line telling how to do it:

In Methyl.py
mutation.species_types["Methylable"] = lambda random_generator:[
 ["Methylable"],
 ['Diffusible',mutation.sample_dictionary_ranges('Species.diffusion',random_generator)]
]
classes_eds2.Species.Tags_Species["Methylable"] = []

In the above lines, we tell φ-evo that a Methylable species has two
characteristics:

	Methylable: obviously

	Diffusable: An extra characteristic is added to show how one would
add a characteristics that comes with a parameter. A lambda function
allows the program to generate new parameters when a new species is
created.

Note: You can use the mutation.sample_dictionary_ranges to
sample a random variable whose range has been define in
dictionary_ranges in the init file. ### Set the default ranges for
the parameters

In Methyl.py

Define the default dictionary_range
mutation.dictionary_ranges['Methyl.methyl'] = 0.0/(mutation.C*mutation.T)
mutation.dictionary_ranges['Methyl.demethyl'] = 0.0/mutation.T

Define the Methyl class

Every interaction in φ-evo inherits from the
classes_eds2.Interaction:

In Methyl.py
class Methyl(classes_eds2.Interaction):
 """
 Methylation interaction

 Args:
 Methyl.methyl(float): binding rate of a methyl group
 Methyl.demethyl(float): unbinding rate of a methyl group
 label(str): Methylation
 input(list): Type of the inputs
 output(list): Type of the outputs
 """
 def __init__(self,methyl=0,demethyl=0):
 classes_eds2.Node.__init__(self)
 self.methyl=methyl
 self.demethyl=demethyl
 self.label='Methylation'
 self.input=['Methylable']
 self.output=['Species']

 def __str__(self):
 """
 Used by the print function to display the interaction.
 """
 return "{0.id} Methylation: methyl. = {0.methyl:.2f}, demethyl = {0.demethyl:.2f}".format(self)

 def outputs_to_delete(self,net):
 """
 Returns the methylated form of the species to delete when the reaction is deleted.
 """
 return net.graph.successors(self)

The interaction’s methods are the following:

	__init__: Creates the interaction object

	__str__: Produces the string used by the print function

	outputs_to_delete: Function that tells what are the species that
were added to the network when the interaction was built and that
need to be deleted when the interaction is removed.

Handling the mutation

The program needs five functions to tell φ-evo how to add the mutation
via a mutation

number_Methyl

Evaluate the number of possible interactions of type Methyl that can
be added to the network. This number is used to verify that the actual
number of possible mutation found in random_Methyl is consistant
with our intuition.

In Methyl.py

def number_Methyl(self):
 """
 Returns the number of possible methylation in the current network.
 Note: this function is optional, it is used to check the consistency of
 the random_Methyl function.
 """
 n = self.number_nodes('Methylable')
 n_Methyl = self.number_nodes('Methyl')
 return n-n_Methyl

new_Methyl

This is the function that adds the Methyl interaction to the Network.
It creates both a Methyl interaction and a methylated species.

In Methyl.py
def new_Methyl(self,S,methyl,demethyl,parameters):
 """
 Creates a new :class:`Networks.Methyl.Methyl` and the species methylated for in the the network.

 Args:
 S: species to methylate
 methyl(float): binding rate of a methyl group
 demethyl(float): unbinding rate of a methyl group
 parameters(list): Parameters of the methylated species
 Returns:
 [methyl_inter,S_methyl]: returns a Methyl interaction and a methylated species.
 """

 S_methyl = classes_eds2.Species(parameters)
 meth_inter = Methyl(methyl,demethyl)
 assert meth_inter.check_grammar([S],[S_methyl]),"Error in grammar, new Methylation"
 self.add_Node(S_methyl)
 self.add_Node(meth_inter)
 self.graph.add_edge(S,meth_inter)
 self.graph.add_edge(meth_inter,S_methyl)
 return [meth_inter,S_methyl]

Note: Then function needs a list of characteristics for the
methylated species created. It is provide via parameters.

new_random_Methyl

Wrapping of the new_Methyl function. It generates randomly the rate
of the methylation and the parameters of the methylated species created.

In Methyl.py

def new_random_Methyl(self,S):
 """
 Creates a methylation with random parameters.

 Args:
 S: Species to methylate
 Returns:
 [methyl_inter,S_methyl]:returns a Methyl interaction and a methylated species.
 """
 parameters = {}
 if S.isinstance("TF"):
 parameters['TF'] = self.Random.random()*2
 for tt in S.types:
 if tt not in ["TF","Methylable","Input","Output"]:
 parameters[tt] = [mutation.sample_dictionary_ranges('Species.{}'.format(attr),self.Random) for attr in S.Tags_Species[tt]]

 # Transform to fit phievo list structure
 parameters = [[kk]+val if val else [kk] for kk,val in parameters.items()]
 methyl = mutation.sample_dictionary_ranges('Methyl.methyl',self.Random)
 demethyl = mutation.sample_dictionary_ranges('Methyl.demethyl',self.Random)
 return self.new_Methyl(S,methyl,demethyl,parameters)

random_Methyl

Function called by the φ-evo to add a new Methylation interaction to the
network during the evolution. It chooses a methylable species randomly
and calls new_random_Methyl to add a methylation to this species.

In Methyl.py

def random_Methyl(self):
 """
 Evaluates the species that can be phosphorilated, picks one an create a random
 methylation. The random mutation is made using :func:`new_random_Methyl <phievo.Networks.classes_eds2.new_random_Methyl>`.

 Returns:
 [methyl_inter,S_methyl]: returns a Methyl interaction and a methylated species.
 """
 try:
 list_methylable=self.dict_types["Methylable"]
 except KeyError:
 print("\tThe network contain no Methylacble species.")
 raise
 list_possible_methylable = []
 for S in list_methylable:
 if not self.check_existing_binary([S],"Methyl"):
 list_possible_methylable.append(S)
 n_possible = len(list_possible_methylable)
 assert n_possible==self.number_Methyl(),"The number of possible new methylation does not match its theoretical value."
 if n_possible==0:
 if __verbose__:
 print("No more possible methylation.")
 return None
 else:
 S = list_possible_methylable[int(self.Random.random()*n_possible)]
 return self.new_random_Methyl(S)

Methyl_deriv_inC

Function that generates the C code string of the interaction kinetics.

In Methyl.py

def Methyl_deriv_inC(net):
 """
 Function called to generate the string corresponding to in a methylation in C.
 """
 func_str = "\n/************** Methylations *****************/\n"
 methylations = net.dict_types.get("Methyl",[])
 for methyl_inter in methylations:
 S = net.graph.predecessors(methyl_inter)[0]
 S_meth = net.graph.successors(methyl_inter)[0]
 f_rate = "{M.methyl}*{S.id}".format(M=methyl_inter,S=S)
 b_rate = "{M.demethyl}*{S_m.id}".format(M=methyl_inter,S_m=S_meth)

 func_str += deriv2.compute_leap([S.id],[S_meth.id],f_rate)
 func_str += deriv2.compute_leap([S_meth.id],[S.id],b_rate)
 return func_str

Bind the code to φ-evo

The last step is to add all the functions written previously to the
default Mutable_Network.

In Methyl.py
setattr(classes_eds2.Network,"number_Methyl",number_Methyl)
setattr(classes_eds2.Network,"new_Methyl",new_Methyl)
setattr(classes_eds2.Network,"new_random_Methyl",new_random_Methyl)
setattr(classes_eds2.Network,"random_Methyl",random_Methyl)
deriv2.interactions_deriv_inC["Methyl"] = Methyl_deriv_inC

You can download
Methyl.py [https://github.com/phievo/phievo/raw/master/Examples/Methyl.py]
from φ-evo’s examples ### Edit the init file to load Methyl

The top of the init file should now be able to load the Methyl module
with an import if the two files are in the same directory:

In initialization.py
import Methyl

Now the new mutation settings are made similarly to any of the default
interaction:

In initialization.py

mutation.dictionary_ranges['Methyl.methyl'] = [0.1,1]
mutation.dictionary_ranges['Methyl.demethyl'] = [0.1,0.5]

dictionary_mutation['random_gene(\'Methylable\')'] = 0.1
dictionary_mutation['random_Interaction(\'Methyl\')']=0.1
dictionary_mutation['remove_Interaction(\'Methyl\')']=0.01
....

Known Bugs

Disabling scrolling bar in Analyse Run.ipynb

cell>All Output>Toggle Scrolling

phievo package

Networks module

classes_eds2

Defines the main class used to describe the evolved networks
The class hierarchy is the following:

	Network

	
	
	Node:

	
	Species

	TModule

	
	Interaction:

	
	CorePromoter

	TFHill

	PPI

	Phosphorylation

	other interactions

Types: Should be just the class, but for Species we have mutliple types (eg TF, Complex, Kinase, Phosphatase, Input, Output), several of which can apply at once, so the class defn in python not general enough.

IO: species of type = ‘Input’ has a defined time course supplied within the integrator.c. Type = ‘Output’ are the species whos time course is used by the fitness function, they are numbered and created as genes ie with TModule and CorePromoter nodes attached to them.

Grammar: the rules as for what can interact with what, depends on the type of interaction and the types of inputs and outputs. All the data for checking grammar given in the class defn of interaction. The grammar also enters the function, Network.remove_Node().

Class Network: defines a bipartite graphs with adjacent nodes either ‘physical-objects, segments of the genome (eg Species or TModule) or interactions. Network class then has lots of methods to add and remove nodes and edges, check the grammar rules, and output the network either as C-code or as dot diagram .

Caps: Classes begin as caps, abbreviations eg TF in CAPS. Functions within classes lc, ‘_’ to separate names, retain Caps for embedded class names.

Arguments to functions are in order implied by directed graph, eg
check_grammar(nodes_in, node_tested, nodes_out)
add_interaction(upstream_species, interaction, downstream species)

	
class phievo.Networks.classes_eds2.Interaction

	Bases: phievo.Networks.classes_eds2.Node

Interaction class derived from Node, defines interaction between Species or TModule

	
check_grammar(input_list, output_list)

	checks the grammar for the interactions

	Parameters

	
	input_list (list) – nodes to be checked

	output_list (list) – nodes to be checked

	Returns

	Boolean for the consistency of up and downstream grammar

	
class phievo.Networks.classes_eds2.Network

	Bases: object

Complete description of a network of interactions.

It is represented as a bipartite graph between the biochemical species and
the interactions. The very description is stored in the graph attribute.

Note that each interaction import add new methods to the Network class.

	
graph

	networkx.MultiDiGraph – the network properly speaking

	
order_node

	int – index to keep track of the order of the nodes

	
dict_types

	dict – a dictionary indicating the Nodes of a given type (types are the keys)

	
hash_topology

	int – to index the topologies (see __hash_net_topology__)

	
title

	str – for graphing network and to hold misc info

	
Cseed

	int – random seed for the integration in C

	
remove_output_when_duplicate

	bool – if you want to remove Output tag when duplicating genes

	
activator_required

	bool – if an activator is required to get any gene product

	
fixed_activity_for_TF

	bool – if a TF either an activator or repressor (if False, they can do both)

	Main functions:

	add_* methods just add objects to the graph
new_* create and add objects (usually by calling add_* method)

	
add_CorePromoter2Species(inter, output)

	Add a CorePromoter Interaction and its output to the network

	Parameters

	
	inter (CorePromoter) – the CorePromoter to be added

	output (Species) – the CorePromoter output

	
add_Node(node)

	add_node to graph unless already present

	Parameters

	node (Node) – The node to be added

	Returns

	boolean indicating if the node has effectively been added

	
add_TFHill(tf, inter, module)

	Add a TF, a TModule and a TFHill interaction to the network

	Parameters

	
	tf (Species) – with the ‘TF’ tag

	inter (TFHill) – will link tf and module

	module (TModule) – TModule to link the TFHill to

	
add_TModule2CorePromoter(module, inter)

	Add a CorePromoter Interaction and its TModule to the network

	Parameters

	
	module (TModule) – the CorePromoter module

	inter (CorePromoter) – the CorePromoter to be added

	
catal_data(interaction)

	Find the reactants, catalysors, products for a catalytic interaction

	Parameters

	interaction – the Interaction you are interested in

	Returns

	list of the form [catalyst,reactants,products]

	
check_Node(node, list_nodes_loop)

	Check if a Node can be removed from the network

Delegate to Node.isremovable
check if node is not an input/output or a node uniquely
and directly upstream of a nonremovable species
(eg part of output gene)

	Parameters

	
	node (Node) – the node to be checked

	list_node_loops (list) – to handle non tree like network

Return: Boolean indicates if node can be safely removed

	
check_existing_Degradation(i1, i2)

	Check if a Degradation exists between species i1 and i2

	Parameters

	
	i1 (Species) – the ‘enzyme’

	i2 (Species) – the species degraded

	Returns

	True if i1 is known to degrade i2

	
check_existing_Phosphorylation(signature)

	check if a particular phosphorylation exists in the network

	Parameters

	signature (list) – The signature of the phospho in the form [Kinase,Input]

Return: True if this phosphorylation exist

	
check_existing_binary(list, Type)

	Check if a specific binary interaction of type Type already exists

typically used for PPI

	Parameters

	
	list (list) – the reactants (Nodes) you are looking for

	Type (str) – the type of Interaction you are looking for

Return: bool

	
check_existing_link(list, Type)

	Check if a specific interaction of type Type already exists between the elements of list

	Parameters

	
	list (list) – the reactant/product couple (Nodes) you are looking for

	Type (str) – the type of Interaction you are looking for

Return: bool

	
clean_Nodes(verbose=False)

	remove nodes from the network until all nodes pass the check_grammar test

	Parameters

	verbose (bool) – Flag to activate the prolix mode

Return: Boolean indicating the completion of the process

Delete any node with incorrect grammar until all remaining nodes pass test
Currently implemented to check grammar on interaction nodes only, thus need
remove_Node function that kills species and other phys objects that are not defined
in absence of interaction

	
delete_clean(id, target='interaction', verbose=False)

	Remove a node according to its id and clean the network
Warning: This operation renames all the nodes (and changes the id)

	Parameters

	
	id – integer id of the node

	target – string either interaction or species, the type of the node to delete

	
draw(file=None, edgeLegend=False, extended=False, display=True, return_graph=False)

	Draw the network in a matplotlib framework

Delegate to pretty_graph

	Parameters

	
	file (str) – save the picture in file,
or print it on screen if file is None

	edgeLegend (bool) – Label the graph edges

	extended (bool) – Display inner modules (ex: TModules)

	display (bool) – Display the figure

	return_graph (bool) – Returns a graph object rather than a figure

Examples

my_Network.draw(‘my_lovely_network.pdf’)

	
duplicate_PPI(species, D_species, interaction, module, D_module)

	function to duplicate a PPI interaction

	Parameters

	
	species (Species) – the original species

	D_species (Species) – the new species

	interaction (PPI) – the interaction you want to duplicate

	module (TModule) – the original module

	D_module (TModule) – the new module

	
duplicate_TFHill(D_species, interaction, module, D_module)

	duplicate a TFHill interaction

	Parameters

	
	D_species (Species) – the new species

	interaction (TFHill) – the interaction you want to duplicate

	module (TModule) – the original module

	D_module (TModule) – the new module

	
duplicate_downstream_interactions(species, D_species, module, D_module)

	Called in case of gene duplication to copy the downstream interactions

	Parameters

	
	species (Species) – the ‘mother’ species

	D_species (Species) – the ‘daughter’ species

	module (TModule) – the ‘father’ module

	D_module (TModule) – the ‘son’ module

	
duplicate_gene(species)

	Duplicate a gene, i.e. a triplet Tmodule/CorePromoter/Species

	Parameters

	species (Species) – Species to duplicate

	Returns

	
	list of the form [new_TModule, new_CorePromoter, new_Species, old_TModule]

	
	new_TModule: TModule

	new_CorePromoter: CorePromoter

	new_Species: Species

	old_TModule: TModule

or None if an error occured

	
duplicate_species_and_interactions(species)

	Called to duplicate a species with its interactions

Right now only duplicates downstream TFHills and PPI and
upstream TFHills.
The input&output tags are removed from duplicate gene
(see self.remove_output_when_dulicate)

	Parameters

	species (Species) – the mother species

	Returns

	A list [D_module,D_promoter,D_species]
D_module (TModule): the duplicate TModule
D_promoter (CorePromoter): the duplicate CorePromoter
D_species (Species): the duplicate Species

	
get_node(id, target='interaction')

	Return the node correspoding to the specified id and target

	Parameters

	
	id – integer id of the node

	target – string either interaction or species, the type of the node to search

	
list_possible_Degradation()

	Return the list of all possible new degradations

	
new_Degradation(Input1, Input2, rate)

	Create a new Degradation and add it to the network

	Parameters

	
	Input1 (Species) – the ‘enzyme’

	Input2 (Species) – the species degraded (have to be Degradable)

	rate (float) – the degradation rate

	Returns

	list of the form [Degradation]
or None if an error occured

	
new_PPI(P1, P2, assoc, dissoc, types)

	Create a new Networks.PPI.PPI, its associated complex and add then to the network.

	Parameters

	
	P1 (Species) – First Protein

	P2 (Species) – Second Protein

	assoc (float) – the association rate

	dissoc (float) – the dissociation rate of the complex

	types (list) – the types of the complex species

	Returns

	
	ppi: PPI

	complex created: Species

	Return type

	list of the form [ppi,`complex created`] with

	
new_Phosphorylation(kinase, species, rate, threshold, hill, dephospho)

	Create a new Phosphorylation, its associated product and add them to the network.

	Parameters

	
	kinase (Species) –

	species (Species) –

	rate (float) – the association rate

	threshold (float) – the Michaelis-Menten constant

	hill (float) – the hill coefficient of the reaction

	dephospho (float) – the dephosphorylation rate of the product

	Returns

	list of the form [Phosphorylation , Species]
or None if an error occured

	
new_Species(types)

	Create a new Species instance and add it to the network

	Parameters

	types (list) – the list types of the Species (see Species.__init__)

	Returns

	The Species which have been created

	
new_TFHill(tf, hill, threshold, module, activity=0)

	Create a new TFHill with given parameters and link it to the network.

	Parameters

	
	tf (Species) – the upstrem Species

	hill (float) – the hill coefficient of the reaction

	threshold (float) – the Michaelis-Menten constant

	module (TModule) – the downstream TModule

	activity (int) – if fixed_activity_for_TF is True, always use the activity of tf

	Returns

	return the new interaction or None if an error occured

	Return type

	TFHill

	
new_custom_random_gene(ltypes)

	

	
new_enhancer(species, rate, delay, parameters, basal=0.0)

	Create a complete new gene (TModule, CorePromoter and Species)

	Parameters

	
	species (Species) –

	rate (float) – the rate production of the TModule

	delay (int) – the delay of the CorePromoter

	parameters (list) – the species parameter (see Network.new_Species)

	basal (float) – the basal production of the TModule (default to 0.)

	Return: list of the form [Networks.classes_eds2.TModule, Networks.CorePromoter.CorePromoter]

	or None if an error occured

	
new_gene(rate, delay, parameters, basal=0.0)

	Create a complete new gene (TModule, CorePromoter and Species)

	Parameters

	
	rate (float) – the rate production of the TModule

	delay (int) – the delay of the CorePromoter

	parameters (list) – the species parameter (see Network.new_Species)

	basal (float) – the basal production of the TModule (default to 0.)

	Return: list of the form [Networks.classes_eds2.TModule, Networks.CorePromoter.CorePromoter, Networks.classes_eds2.Species]

	or None if an error occured

	
number_Degradation()

	Computes the number of possible Degradations

	
number_PPI()

	Return the number of possible PPI in network

	
number_Phosphorylation()

	Return the number of possible Phosphorylations

	
number_TFHill()

	Return the number of possible TFHill

	
number_nodes(Type)

	count the number of Nodes of type Type

	Parameters

	Type (str) – the type you are looking for

Return: The number of Nodes of types Type in dict_types

	
propagate_activity_TFHill()

	Ensure that TFHill activity correspond to the one of their predecessor - done for compatibility with older versions

	
remove_Node(Node)

	remove node from the network graph

In case of interactions, also remove any phys objects (eg species,
TModule) that are no more defined in absence of this interaction
In the course of evolution, only interactions should be explicitly
removed, then the other nodes are managed with the help of clean_nodes

	Parameters

	
	node (Node) – The node to be removed

	verbose (bool) – Flag to activate the prolix mode

Return: Boolean indicating the completion of the process

	
store_to_pickle(filename)

	Save the whole network in a pickle object named filename

	Parameters

	filename (str) – the directory where the object is saved

	
verify_IO_numbers()

	Redetermine all the input/output index

label_them run through the list and give the correct index to all
the items

	
write_id()

	Update all indexations of the network

Return: a number comprise between 0 and sys.maxint

	
class phievo.Networks.classes_eds2.Node

	Bases: object

Superclass for all nodes object

	
id = 'None'

	

	
int_id()

	extract the integer identifer computed in Network.write_id()

	Returns

	int - the identifier of the Node
None when valid int not found eg if write_id not called

	
isinstance(name)

	check the type of a node

Customed the builtin isinstance(derived_class, base_class)
for the general case

	Parameters

	name – the type to be tested

	Returns

	returns True if self is of type name

	
isremovable(net, list_nodes_loop, verbose=False)

	Check if a Node can be removed from the network

	Parameters

	
	net (Network) – the network self belongs to

	list_nodes_loop (list) – to handle non tree like network

	debug (bool) – Flag to activate a prolix version

	Returns

	Boolean removable or not

	
list_types()

	Return the list of types associated to a node

	
outputs_to_delete(net)

	Indicates a list of objects to delete when removing the node from the network

Needs to be tuned specifically by all derived classes.

	Parameters

	net (Network) – the network self belongs to

	Returns

	list - default empty list

	
print_node()

	print a full description of the current node

	
rand_modify(random_generator)

	modify every parameters of the node self

This subroutine is then export to the Node class and used as a method
Called the sample_dictionary_ranges subroutine when needed

	Parameters

	
	self (Node) – the node you want to modify

	random_generator – a random number generator (.random() called here)

	Returns

	in place modification

	Return type

	None

	
string_param()

	Returns a function with parameters for the nodes

Mainly here to be customized in subclasses

	Returns

	string , default ‘.’

	
class phievo.Networks.classes_eds2.Species(listtypes=[])

	Bases: phievo.Networks.classes_eds2.Node

Class for any type of species, or list of species of various types
Input list of lists eg [[Degradation, degradation], [TF, activity], [Complex,],
[Kinase],..
[Output, n_put], [Input, n_put]] where n_put is an integer enumerating IO
The first tag of [‘Species’] is assumed and should not be input

	
Tags_Species = {'Kinase': [], 'Output': ['n_put'], 'TF': ['activity'], 'Receptor': [], 'Linear_Producer': [], 'Complexable': [], 'pMHC': [], 'Ligand': [], 'Phospho': ['n_phospho'], 'Species': [], 'Complex': [], 'Phosphatase': [], 'Input': ['n_put'], 'Degradable': ['degradation'], 'Diffusible': ['diffusion'], 'Phosphorylable': []}

	

	
add_type(Type)

	add Type and its corresponding parameters

Several layer of check are done before the core function
to insure that Type is correctly added
Also used to add the output/input tag to species. e.g.:species.add_type([‘Output’,n_put])

	Parameters

	
	Type (list) – must be provided in a list of the form

	as defined in Tags_Species (['Tag',parameter1,parameter2]) –

	Returns

	1 if everything is done properly
None if an error occur during the process

	
change_type(Type, parameters)

	Change the parameters of a type

	Parameters

	
	Type (string) – name of the type to modify

	parameters (list) – list of the new parameters as defined in the Tag_Species

	
clean_type(Type)

	Removes a type and corresponding attributes from a species

	
def_label()

	Function to write labels for graphical representation

	
default_tags = ['Degradable', 'Phosphorylable', 'Diffusible']

	

	
isinstance(name)

	check the type of a node

Customed the builtin isinstance(derived_class, base_class)
for the Species class

	Parameters

	name – the type to be tested

Return: return True if self is of type name

	
label = 'Generic Species'

	

	
list_types()

	Return the list of types associated to a node (custom for Species)

	
parameters = ['Degradable', 'Phosphorylable', 'Diffusible']

	

	
class phievo.Networks.classes_eds2.TModule(rate=0, basal=0)

	Bases: phievo.Networks.classes_eds2.Node

A TModule regulate the production of a Species, it generally binds
upstream to a CorePromoter (direct production) or a TFHill
(regulation) and downstream to another TFHill which point to the
product Species.

	Parameters

	
	rate (float) – the production rate to be regulated

	basal (float) – the basal production rate

	
string_param()

	

	
phievo.Networks.classes_eds2.check_consistency(lTypes, lNodes)

	Check the consistency between a list of types and a list of nodes

Typically used when constructing an interaction to check the
biochemical grammar. For each type, it recursively checks if there
is a corresponding node in list_nodes.

	Parameters

	
	lTypes – the desired type of each node

	lNodes – the list of nodes

	Returns

	Boolean indicating if the consistency is OK

	
phievo.Networks.classes_eds2.compare_node(x)

	Used to order nodes in arbitrary but deterministic order when needed

	Definition of CorePromoter Interaction. The CorePromoter is part of a gene system

	and binds a TModule to a Species.

	
class phievo.Networks.CorePromoter.CorePromoter(delay=0)

	Bases: phievo.Networks.classes_eds2.Interaction

Core promoter for transcription of one species

The CorePromoter serve as a link between the TModule and the Species
to preserve the bipartite nature of the network.

	
delay

	int

	
label

	str – ‘transcription’ by default

	
input

	list – list of input types: [‘TModule’]

	
output

	list – list of output types: [‘Species’]

	
outputs_to_delete(net)

	indicate the Nodes to remove when deleting the CorePromoter

	Parameters

	net (Network) – The network to which the CP belongs

Return: list of all the predec. and succ. of self in net

	
string_param()

	Self description of the Interaction

	
phievo.Networks.CorePromoter.add_CorePromoter2Species(self, inter, output)

	Add a CorePromoter Interaction and its output to the network

	Parameters

	
	inter (CorePromoter) – the CorePromoter to be added

	output (Species) – the CorePromoter output

	
phievo.Networks.CorePromoter.add_TModule2CorePromoter(self, module, inter)

	Add a CorePromoter Interaction and its TModule to the network

	Parameters

	
	module (TModule) – the CorePromoter module

	inter (CorePromoter) – the CorePromoter to be added

	
phievo.Networks.CorePromoter.duplicate_gene(self, species)

	Duplicate a gene, i.e. a triplet Tmodule/CorePromoter/Species

	Parameters

	species (Species) – Species to duplicate

	Returns

	
	list of the form [new_TModule, new_CorePromoter, new_Species, old_TModule]

	
	new_TModule: TModule

	new_CorePromoter: CorePromoter

	new_Species: Species

	old_TModule: TModule

or None if an error occured

	
phievo.Networks.CorePromoter.new_custom_random_gene(self, ltypes)

	

	
phievo.Networks.CorePromoter.new_enhancer(self, species, rate, delay, parameters, basal=0.0)

	Create a complete new gene (TModule, CorePromoter and Species)

	Parameters

	
	species (Species) –

	rate (float) – the rate production of the TModule

	delay (int) – the delay of the CorePromoter

	parameters (list) – the species parameter (see Network.new_Species)

	basal (float) – the basal production of the TModule (default to 0.)

	Return: list of the form [Networks.classes_eds2.TModule, Networks.CorePromoter.CorePromoter]

	or None if an error occured

	
phievo.Networks.CorePromoter.new_gene(self, rate, delay, parameters, basal=0.0)

	Create a complete new gene (TModule, CorePromoter and Species)

	Parameters

	
	rate (float) – the rate production of the TModule

	delay (int) – the delay of the CorePromoter

	parameters (list) – the species parameter (see Network.new_Species)

	basal (float) – the basal production of the TModule (default to 0.)

	Return: list of the form [Networks.classes_eds2.TModule, Networks.CorePromoter.CorePromoter, Networks.classes_eds2.Species]

	or None if an error occured

	
phievo.Networks.CorePromoter.random_enhancer(self, Type='TModule')

	Create a new random enhancer. It includes a TModule and a CorePromoter.

	Parameters

	Type (list) – following the traditional template [‘type’, param]

	Returns

	
	tModule: TModule

	core_promoter: CorePromoter

	Return type

	list of the form [tmodule, core_promoter] with

	
phievo.Networks.CorePromoter.random_gene(self, Type='Species')

	Create a new random gene with a species of type Type

	Parameters

	Type (list) – following the traditional template [‘type’, param]

	Returns

	
	tModule: TModule

	core_promoter: CorePromoter

	species: Species

	Return type

	list of the form [tmodule, core_promoter, species] with

Mutation

This module adds a layer to the elements defined in classes_eds2 and creates an extended version of Species called Mutable_Network.
The addon adds a set of tools for node mutations.
For mutation/removal, effective mutation rate will be the reference mutation rate times the number of instances of the considered Type.

	Attributes

	
	C,L,T (float):

	dictionary_mutation (dict): referenced mutation rates and associated command as key

	dictionary_ranges (dict): referenced parameters that can change and their ranges

	list_create (list): list of Nodes subject to creation

	list_mutate (list): list of Nodes subject to mutation

	list_remove (list): list of Nodes subject to removal

	list_types_output (list): list of the possible types for the output

	
class phievo.Networks.mutation.Mutable_Network(generator=<random.Random object at 0x3a80ac8>)

	Bases: phievo.Networks.classes_eds2.Network

Expand the Network class with all functions related to mutation

the random_Type() routines are the only ones called by evolution to sample all possible
links on graph that can give rise to given interaction Type and then choses one.
The assignment of random interaction parametes and types of output, packaged in
separate routines new_random_Type(), that can be used independently to generate
specific topologies with random parameters
.. attribute:: fitness

float – the fitness of the Network, None by default (worst than everyother number)

	
dlt_fitness

	float – the change of fitness at the last generation

	
data_evolution

	list – keep various information such as fitness variance, average…

	
data_next_mutation

	list – field to keep the data on the next mutation

	
Random

	Random – defines the local random generator number

Main functions:

	
build_mutations()

	builds a dictionary with relative mutation rates for a specific network

This method is based on dictionary_mutation

	Returns

	dict with the rates of each events for the network

	
compute_Cseed()

	Return a random integer to determine the integrator seed

	
compute_next_mutation()

	determine the time and type of next mutation for the gillespie algo.

	Returns

	float time to next mutation

given a network, computes the time of the next mutation and the command to execute to perform the mutation
for the gillispie algorithm

	
mutate_Node(Type)

	randomly selects then mutates a Node of a given Type

	Parameters

	Type (str) – the Type to mutate (e.g. Species: Species, TFHill: TFHill, Node: Node <phievo.Networks.classes_eds2.Node>…)

	Returns

	boolean if something is mutated

	
mutate_and_integrate(prmt, nnetwork, tgeneration, mutation=True)

	function to mutate, integrate and update the fitness

Note that compile_and_integrate is defined in Networks/deriv2.py

	Parameters

	
	prmt (dict) –

	nnetwork (int) – an id for the C-file

	tgeneration (float) – the time before the next gen.

	mutation (bool) – if False, no mutation will be made

	Returns

	
	n_mutations (int): the numbre of mutation performed

	nnetwork (int): same as args

	self (Mutable_Network): the Mutable_Network object itself

	result (list): output of treatment_fitness (see compile_and_integrate)

	Return type

	List [n_mutations,nnetwork,self,result] where

	
new_random_Degradation(Input1, Input2)

	Creates a Degradation with random parameters between the Species

	Parameters

	
	Input1 (Species) – the ‘enzyme’

	Input2 (Species) – the species degraded (have to be Degradable)

	Returns

	list of of the form [Degradation]

	
new_random_PPI(P1, P2)

	Creates a PPI with random parameters between the Species

	Parameters

	
	P1 (Species) – First protein

	P2 (Species) – Second protein

	Returns

	
	ppi: PPI

	complex created: Species

	Return type

	list of the form [ppi,`complex created`] with

	
new_random_Phosphorylation(kinase, species)

	Creates a Phosphorylation of species by kinase with random parameters

	Parameters

	
	kinase (Species) – the kinase

	species (Species) – the species to Phosphorylate

	Returns

	list of the form [Phosphorylation , Species]
or None if an error occured

	
new_random_TFHill(tf, module)

	Creates a TFHill between tf and module with random parameters

	Parameters

	
	tf (Species) – must have the ‘TF’ tag

	module (TModule) – TModule associated to the TFHill

	Returns

	return the new interaction or None if an error occured

	Return type

	TFHill

	
random_Degradation()

	Create new random Degradation among all possible ones

	Returns

	of the form [Degradation]
or None if an error occured

	Return type

	list

	
random_Interaction(Interaction_Type)

	create a new (and unique) interaction

	Parameters

	Interaction_Type (str) – the type of interaction you want

	Returns

	None

	
random_PPI()

	Create new random PPI among all those possible

	Returns

	
	ppi: PPI

	complex created: Species

	Return type

	list of the form [ppi,`complex created`] with

	
random_Phosphorylation()

	Creates a new Phosphorylation among all possibles

	Returns

	list of the form [Phosphorylation , Species]
or None if an error occured

	
random_Species(Type='Species')

	Create a new random species instance of a given type

	Parameters

	Type (str) – the desired type of the new Species instance

	Returns

	note that it is automatically added to the network

	Return type

	Species

	
random_TFHill()

	Creates a new TFHill among all possibles

	Returns

	return the new interaction or None if an error occured

	Return type

	TFHill

	
random_add_output()

	Randomly adds an output tag to a random species

	
random_change_output()

	Function that changes one output by adding then removing a TAG output

	
random_duplicate()

	Routine to duplicate gene and its interactions

Currently the classes_eds2.duplicate_* only implemented for TF & PPI interactions
If duplicating an output gene, add a new output tag to duplicated species, irrespective of other dictionary_mutation[‘output’] values in initialization.

	Returns

	boolean indicating if a duplication has been finally done

	
random_enhancer(Type='TModule')

	Create a new random enhancer. It includes a TModule and a CorePromoter.

	Parameters

	Type (list) – following the traditional template [‘type’, param]

	Returns

	
	tModule: TModule

	core_promoter: CorePromoter

	Return type

	list of the form [tmodule, core_promoter] with

	
random_gene(Type='Species')

	Create a new random gene with a species of type Type

	Parameters

	Type (list) – following the traditional template [‘type’, param]

	Returns

	
	tModule: TModule

	core_promoter: CorePromoter

	species: Species

	Return type

	list of the form [tmodule, core_promoter, species] with

	
random_remove_output()

	Removes at random an output tag on some species

Outputs are always index 0,1,2…; not possible to have 0,1,3 for instance

	
remove_Interaction(Type)

	Randomly removes a Node of a given Type

	Parameters

	Type (str) – the type you want to remove (e.g. ‘Interaction’, Species, …)

	Returns

	boolean indicating if something is effectively removed

	
phievo.Networks.mutation.build_lists(mutation_dict)

	Construct the index of Species types subject to various operation

	Parameters

	mutation_dict (dict) – the dictionary listing the various operation (typically inits.dictionary_mutations)

	
phievo.Networks.mutation.ligand_fct(random_generator)

	

	
phievo.Networks.mutation.rand_modify(self, random_generator)

	modify every parameters of the node self

This subroutine is then export to the Node class and used as a method
Called the sample_dictionary_ranges subroutine when needed

	Parameters

	
	self (Node) – the node you want to modify

	random_generator – a random number generator (.random() called here)

	Returns

	in place modification

	Return type

	None

	
phievo.Networks.mutation.random_parameters(Types, random_generator)

	Create a set of new random parameters for a Species instance of type Types

This used only for initialization and adds attributes to various types.
Some of which may not be mutable later

	Parameters

	
	Types (str) – a species type

	random_generator – a random number generator (.random() called here)

	Returns

	parameters a list of random parameters that can create a new Species
or None if an error occured

	
phievo.Networks.mutation.sample_dictionary_ranges(key, random_generator)

	Draw a random value for a parameter of type key

Look on dictionary_range, if the attribute to key is:
a real number, a list or tuple of two reals
defining min-max of range, and sample accordingly.

	Parameters

	
	key (str) – the type of parameter you want

	random_generator – a random number generator (.random() called here)

	Returns

	float a random value
or int if key is CorePromoter.delay
or None if an error occured

TFHill

Definition of TFHill interaction
TFHill are mainly a convenient link between TModule and their regulating
species. It is used to conserve the bipartite nature of the network.

	
class phievo.Networks.TFHill.TFHill(hill=0, threshold=0, activity=0)

	Bases: phievo.Networks.classes_eds2.Interaction

Implement the link between TModule and the TF

	Parameters

	
	hill (float) – the hill coefficient of the reaction

	threshold (float) – the Michaelis-Menten constant

	activity (int) – flag for activation (1) or repression (0)

	label (str) – ‘transcription’ by default

	input (list) – list of input types: [‘TModule’]

	output (list) – list of output types: [‘Species’]

	
string_param()

	Self description of the Interaction

	
phievo.Networks.TFHill.add_TFHill(self, tf, inter, module)

	Add a TF, a TModule and a TFHill interaction to the network

	Parameters

	
	tf (Species) – with the ‘TF’ tag

	inter (TFHill) – will link tf and module

	module (TModule) – TModule to link the TFHill to

	
phievo.Networks.TFHill.compute_transcription(net, module)

	Determine the transcription rate of a given module

Used for integration in transcription_deriv_inC

	Parameters

	module (TModule) – TModule to compute .

	Returns

	string the algebraic transcription rate of module

	
phievo.Networks.TFHill.duplicate_TFHill(self, D_species, interaction, module, D_module)

	duplicate a TFHill interaction

	Parameters

	
	D_species (Species) – the new species

	interaction (TFHill) – the interaction you want to duplicate

	module (TModule) – the original module

	D_module (TModule) – the new module

	
phievo.Networks.TFHill.new_TFHill(self, tf, hill, threshold, module, activity=0)

	Create a new TFHill with given parameters and link it to the network.

	Parameters

	
	tf (Species) – the upstrem Species

	hill (float) – the hill coefficient of the reaction

	threshold (float) – the Michaelis-Menten constant

	module (TModule) – the downstream TModule

	activity (int) – if fixed_activity_for_TF is True, always use the activity of tf

	Returns

	return the new interaction or None if an error occured

	Return type

	TFHill

	
phievo.Networks.TFHill.new_random_TFHill(self, tf, module)

	Creates a TFHill between tf and module with random parameters

	Parameters

	
	tf (Species) – must have the ‘TF’ tag

	module (TModule) – TModule associated to the TFHill

	Returns

	return the new interaction or None if an error occured

	Return type

	TFHill

	
phievo.Networks.TFHill.number_TFHill(self)

	Return the number of possible TFHill

	
phievo.Networks.TFHill.propagate_activity_TFHill(self)

	Ensure that TFHill activity correspond to the one of their predecessor - done for compatibility with older versions

	
phievo.Networks.TFHill.random_TFHill(self)

	Creates a new TFHill among all possibles

	Returns

	return the new interaction or None if an error occured

	Return type

	TFHill

	
phievo.Networks.TFHill.transcription_deriv_inC(net)

	gives the string corresponding to transcription for integration

Return: A single string for all transcriptions in the network

PPI

Definition of Protein-Protein-Interaction
Creation: unknown
Last edition: 2016-10-26

	
class phievo.Networks.PPI.PPI(association=0, disassociation=0)

	Bases: phievo.Networks.classes_eds2.Interaction

Protein-protein interaction between two species

	Parameters

	
	association (float) – the association rate

	disassociation (float) – the dissociation rate fo the complex

	label (str) – ‘PP Interaction’ by default

	input (list) – list of input types: [‘Complexable’,’Complexable’]

	output (list) – list of output types: [‘Species’]

	
check_grammar(input_list, output_list)

	checks the grammar for the interactions (custom for PPI)

	Parameters

	
	input_list (list) – nodes to be checked

	output_list (list) – nodes to be checked

	Returns

	Boolean for the consistency of up and downstream grammar

	
outputs_to_delete(net)

	Return the complex to delete when removing the LR

	
phievo.Networks.PPI.PPI_deriv_inC(net)

	gives the string corresponding to Networks.PPI.PPI for integration

	Returns

	str a single string for all Networks.PPI.PPI in the network

	
phievo.Networks.PPI.duplicate_PPI(self, species, D_species, interaction, module, D_module)

	function to duplicate a PPI interaction

	Parameters

	
	species (Species) – the original species

	D_species (Species) – the new species

	interaction (PPI) – the interaction you want to duplicate

	module (TModule) – the original module

	D_module (TModule) – the new module

	
phievo.Networks.PPI.new_PPI(self, P1, P2, assoc, dissoc, types)

	Create a new Networks.PPI.PPI, its associated complex and add then to the network.

	Parameters

	
	P1 (Species) – First Protein

	P2 (Species) – Second Protein

	assoc (float) – the association rate

	dissoc (float) – the dissociation rate of the complex

	types (list) – the types of the complex species

	Returns

	
	ppi: PPI

	complex created: Species

	Return type

	list of the form [ppi,`complex created`] with

	
phievo.Networks.PPI.new_random_PPI(self, P1, P2)

	Creates a PPI with random parameters between the Species

	Parameters

	
	P1 (Species) – First protein

	P2 (Species) – Second protein

	Returns

	
	ppi: PPI

	complex created: Species

	Return type

	list of the form [ppi,`complex created`] with

	
phievo.Networks.PPI.number_PPI(self)

	Return the number of possible PPI in network

	
phievo.Networks.PPI.random_PPI(self)

	Create new random PPI among all those possible

	Returns

	
	ppi: PPI

	complex created: Species

	Return type

	list of the form [ppi,`complex created`] with

Phosphorylation

Definition of Phosphorylation interaction

! WARNING: IF USING THIS CLASS PUT config.multiple_phospho to 0, otherwise you might have bugs (for now)
TODO: in New Phosphorylation, test on n_phospho; if it is 1 (or higher than something)
then remove Phosphorylable. Also update n_phospho accordingly when phosphorylated

	
phievo.Networks.Phosphorylation.Phospho_deriv_inC(net)

	gives the string corresponding to Phosphorylation for integration

	Returns

	A single string for all Phosphorylations in the network

	
class phievo.Networks.Phosphorylation.Phosphorylation(rate=0, threshold=1, hill_coeff=1, dephospho_rate=1)

	Bases: phievo.Networks.classes_eds2.Interaction

Phosphorylation interaction

	
rate

	float – the phosphorylation rate

	
threshold

	float – the Michaelis-Menten constant

	
hill

	float – the hill coefficient of the reaction

	
dephosphorylation

	float – the dephosphorylation rate

	
label

	str – ‘Phosphorylation’ by default

	
input

	list – list of input types: [‘Kinase’,’Phosphorylable’]

	
output

	list – list of output types: [‘Kinase’,’Phospho’]

	
check_grammar(input_list, output_list)

	checks the grammar for the interactions (custom for Phosphorylation)

	Parameters

	
	input_list (list) – nodes to be checked

	output_list (list) – nodes to be checked

	Returns

	Boolean for the consistency of up and downstream grammar

	
outputs_to_delete(net)

	Return the phosphorylated species to delete when deleting a Phosphorylation

	
phievo.Networks.Phosphorylation.check_existing_Phosphorylation(self, signature)

	check if a particular phosphorylation exists in the network

	Parameters

	signature (list) – The signature of the phospho in the form [Kinase,Input]

Return: True if this phosphorylation exist

	
phievo.Networks.Phosphorylation.new_Phosphorylation(self, kinase, species, rate, threshold, hill, dephospho)

	Create a new Phosphorylation, its associated product and add them to the network.

	Parameters

	
	kinase (Species) –

	species (Species) –

	rate (float) – the association rate

	threshold (float) – the Michaelis-Menten constant

	hill (float) – the hill coefficient of the reaction

	dephospho (float) – the dephosphorylation rate of the product

	Returns

	list of the form [Phosphorylation , Species]
or None if an error occured

	
phievo.Networks.Phosphorylation.new_random_Phosphorylation(self, kinase, species)

	Creates a Phosphorylation of species by kinase with random parameters

	Parameters

	
	kinase (Species) – the kinase

	species (Species) – the species to Phosphorylate

	Returns

	list of the form [Phosphorylation , Species]
or None if an error occured

	
phievo.Networks.Phosphorylation.number_Phosphorylation(self)

	Return the number of possible Phosphorylations

	
phievo.Networks.Phosphorylation.random_Phosphorylation(self)

	Creates a new Phosphorylation among all possibles

	Returns

	list of the form [Phosphorylation , Species]
or None if an error occured

Degradation

Definition of catalysed degradations.

	
class phievo.Networks.Degradation.Degradation(rate=0.0)

	Bases: phievo.Networks.classes_eds2.Interaction

Catalyse the degradation of a given species

	
rate

	float – the degradation constant

	
label

	str – ‘Degradation’ by default

	
input

	list – list of input types: [‘Species’,’Degradable’]

	
output

	list – list of output types: [‘Species’]

	
check_grammar(input_list, output_list)

	checks the grammar for the interactions (custom for degradation)

	Parameters

	
	input_list (list) – nodes to be checked

	output_list (list) – nodes to be checked

	Returns

	Boolean of the consistency of up and downstream grammar

	
outputs_to_delete(net)

	indicate the Nodes to remove when deleting the Degradation

	Parameters

	net (Mutable_Network) – The network to which the interaction belongs

	Returns

	here an empty list

	Return type

	list

	
phievo.Networks.Degradation.Degradation_deriv_inC(net)

	gives the string corresponding to degradations for integration

Return:A single string for all degradation in the network

	
phievo.Networks.Degradation.check_existing_Degradation(self, i1, i2)

	Check if a Degradation exists between species i1 and i2

	Parameters

	
	i1 (Species) – the ‘enzyme’

	i2 (Species) – the species degraded

	Returns

	True if i1 is known to degrade i2

	
phievo.Networks.Degradation.list_possible_Degradation(self)

	Return the list of all possible new degradations

	
phievo.Networks.Degradation.new_Degradation(self, Input1, Input2, rate)

	Create a new Degradation and add it to the network

	Parameters

	
	Input1 (Species) – the ‘enzyme’

	Input2 (Species) – the species degraded (have to be Degradable)

	rate (float) – the degradation rate

	Returns

	list of the form [Degradation]
or None if an error occured

	
phievo.Networks.Degradation.new_random_Degradation(self, Input1, Input2)

	Creates a Degradation with random parameters between the Species

	Parameters

	
	Input1 (Species) – the ‘enzyme’

	Input2 (Species) – the species degraded (have to be Degradable)

	Returns

	list of of the form [Degradation]

	
phievo.Networks.Degradation.number_Degradation(self)

	Computes the number of possible Degradations

	
phievo.Networks.Degradation.random_Degradation(self)

	Create new random Degradation among all possible ones

	Returns

	of the form [Degradation]
or None if an error occured

	Return type

	list

deriv2

Here are the tools to convert a Network object to a C-file that will
be compiled and run.
The C-file goes into workplace_dir/built_integrator*.c along with executable
The C-file is assembled with several pieces:

	header, utilities, geometry, integrator and main: see initialization_code.init_deriv2

	for each interaction: see interaction.interaction_deriv_inC (bottom of file)

	see also Networks.interaction.py and the cfile dictionary

All these pieces are assembled by compute_program(), and then compiled with
compile_and_integrate().

The c-code files passed only once in form of dictionary cfile. The numerical parameters
need to find dimensions of arrays, integration steps, input as argments to functions

	
phievo.Networks.deriv2.workplace_dir

	str – the directory where build_integrator*.c will go

	
phievo.Networks.deriv2.Ccompiler

	str – ‘gcc’ by default

	
phievo.Networks.deriv2.cfile

	dict – where the generic c-code are found (can be reset to fit problem)

	
phievo.Networks.deriv2.noise_flag

	bool – flag to know if we integrate or not with noise

TODO: it would be nice to include in header.h declaration of all C functions used
so that they can then be loaded in any order, currently order constrained by declare
before use.

	
phievo.Networks.deriv2.all_params2C(net, prmt, print_buf, Cseed=0)

	Collect all the numerical constants and format them to C like

neelocalneig,diff,index_ligand,ded

	Parameters

	
	net (Mutable_Network) –
	

	prmt (dict) – dictionary from initialization file

	print_buf (bool) – control printing of time history by C codes

	Cseed (int) – seed for the integrator random number generator

	Returns

	A C formated string of parameters

	
phievo.Networks.deriv2.compile_and_integrate(network, prmt, nnetwork, print_buf=False, Cseed=0)

	Compile and integrate a network

Wait for process completion before launching another integration
See https://www.python.org/dev/peps/pep-0324/ for interface to run C code

	Parameters

	
	network (Mutable_Network) –
	

	prmt (dict) – dictionary from initialization file

	nnetwork (int) – an id to separate the different C-file

	print_buf (bool) – control printing of time history by C codes to a file

	Cseed (int) – seed for the integrator random number generator

	Returns

	list of corresponding to the different line of the output of treatment_fitness
(see your fitness.c file) or None if an error occured

	
phievo.Networks.deriv2.compute_leap(list_input_id, list_output_id, rate)

	Routine to compute strings for derivative in C associated to an interaction

if noise_flag, adds a Langevin noise term which scaled with concentration

	Parameters

	
	list_input_id (list) – contains id of the input, i.e. the depleted species

	list_output_id (list) – contains id of the created species

	rate (str) – the rate, should be positive

	Returns

	a C-formatted string

	
phievo.Networks.deriv2.degrad_deriv_inC(net)

	gives the string corresponding to the degradation integration

	Returns

	A single string for all degradations in the network

	
phievo.Networks.deriv2.track_changing_variable(net, name)

	Return a list of the indices of the species with type name

Use this function when Output or Input may be added
(we do not care about their order)

	Parameters

	
	net (Mutable_Network) –
	

	name (str) – a Species tag, usually ‘Input’ or ‘Output’

	Returns

	list of the id species list ordered by growing n_put

	
phievo.Networks.deriv2.track_variable(net, name)

	Return a list of the indices of the species with type name

This is way of keeping track of fixed IO variables.
Use this function only if the output or input are fixed in the
algorithm, otherwise, use track_changing_variable

	Parameters

	
	net (Mutable_Network) –
	

	name (str) – a Species tag, usually ‘Input’ or ‘Output’

	Returns

	list of the id species list ordered by growing n_put

	
phievo.Networks.deriv2.write_program(programm_file, net, prmt, print_buf, Cseed=0)

	Write the built_integrator of the network in the C file

Collect python encoded C and the stored files selected via cfile
dictionary and write them in the correct order.

	Parameters

	
	programm_file (TextIOWrapper) – the built_integrator file

	net (Mutable_Network) –
	

	prmt (dict) – passed to all_params2C

	print_buf (bool) – passed to all_params2C

	Cseed (int) – passed to all_params2C

	Returns

	The C programm as a python string

lovelyGraph

The lovelyGraph modules contains a set of utilities to plot a network.
It uses the homemade package PlotGraph.

	
phievo.Networks.lovelyGraph.gettype(node, type_list)

	

	
phievo.Networks.lovelyGraph.pretty_graph(net, extended=True, layout='graphviz')

	Creates a ready-to-plot graph object from a network.

	Parameters

	net (Mutable_Network) –

	Returns

	returns a PlotGraph graph

	
phievo.Networks.lovelyGraph.produce_CorePromoter_name(node_reac)

	

	
phievo.Networks.lovelyGraph.produce_Degradation_name(node_reac)

	

	
phievo.Networks.lovelyGraph.produce_PPI_name(node_PPI)

	

	
phievo.Networks.lovelyGraph.produce_Phospho_name(node_reac, cat=False)

	

	
phievo.Networks.lovelyGraph.produce_TFHill_name(node_reac)

	

	
phievo.Networks.lovelyGraph.produce_TModule_name(node_species)

	

	
phievo.Networks.lovelyGraph.produce_species_name(node_species)

	

	
phievo.Networks.lovelyGraph.short_label(species)

	

PlotGraph

Graph

	
class phievo.Networks.PlotGraph.Graph.Graph(layout)

	Bases: object

Container of a directed graph. It contains mainly two types of objects: nodes and edges.

	
add_edge(*argv, **kwargs)

	Add an edge to the graph.

	Parameters

	
	argv (list(str)) – Is handled if it contains only two elements corresponding to the edge’s starting and ending nodes.

	kwargs (dict) – The function handles only the keys style, label that respectively correspond to the edge’s style and its label. It can also deal with nodeFrom and nodeFrom if it was not defined in argv. The other keys are passed for latter use by the plotting function.

	Returns

	Networks.PlotGraph.Components.Edge:The edge reference.

	
add_node(*argv, **kwargs)

	Add a node to the graph.

	Parameters

	
	argv (list(str)) – Is handled if it contains only one element corresponding to the node label.

	kwargs (dict) – The function handles only the keys size, marker that respectively correspond to the node’s area and its shape. It can also deal with label if it was not defined in argv. The other keys are passed for latter use by the plotting function.

	Returns

	Networks.PlotGraph.Components.Node: The node reference.

	
draw(file=None, edgeLegend=False, display=True)

	Draw the graph in a matplib framework. The node and edges are generated using patches.

	Parameters

	file (str) – Optional. When defined, the figure will be saved under the file name. Otherwise the program pops up a window with the graph.

	Returns

	None

	
edge_list()

	Generate a list of the node edges

	Returns

	Each tuple in the list contains the starting and ending node labels.

	Return type

	list((str,str))

	
get_networkx()

	

	
layout(recursion=500)

	Compute a layout for the node and set the node positions.

	
node_list()

	Generate a list of the node labels

	Returns

	of the labels for the node contained in the graph

	Return type

	list(str)

	
set_node_size(size)

	Homogenise the node area in the network.

	Parameters

	size (float) – Relative node area as compare to the default area.

	Returns

	None

Graph components

	
class phievo.Networks.PlotGraph.Components.Arrow(**kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Edge

The class arrow is inherited from Networks.PlotGraph.Components.Edge. It adds extra fonctionalities to generate Matplolib patches.

	
get_autoPatch(offsets=(0, 0), num=0)

	Generates a matplotlib patch for the arrow between two nodes. It takes into account the offset to keep between the ends of the arrow and the node given the node shape. This is an implementation of get_vector for a edge that start and ends at the same node.

	Parameters

	offsets (float,float) – offset between node and the start of the arrow and offset between node and the end of the arrow

	Returns

	Matplotlib.Patches

	
get_patch(offsets=(0, 0), angle=0.2)

	Generates a matplotlib patch for the arrow between two nodes. It takes into account the offset to keep between the ends of the arrow and the nodes given the node shapes.

	Parameters

	offsets (float,float) – offset between node1 and the start of the arrow and offset between node2 and the end of the arrow

	Returns

	Matplotlib.Patches

	
class phievo.Networks.PlotGraph.Components.BarB(widthB=0.4, angleB=None)

	Bases: matplotlib.patches._Bracket

An arrow with a bar(|) at the B end. The class is added to matplotlib to allow “-|” style of arrow.

	
phievo.Networks.PlotGraph.Components.Bezier(P0, P1, P2)

	

	
class phievo.Networks.PlotGraph.Components.Circle(*args, **kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Node

Circle is inherited from Networks.PlotGraph.Components.Node and represents a node with a circular shape (⬤).

	
get_patch()

	Draw of a matplotlib patch to be added to the graph plot.

	Returns

	Matplotlib.Patch

	
radius(theta)

	Every point on the node’s boundary is refered to by an angle in rad. Given the shape of the node, compute the radius of the boundary for a angle.

\[\theta \rightarrow R\]

	Parameters

	theta (float) – Angle a which to compute the distance between the center and the boundary.

	Returns

	corresponding to the radius.

	Return type

	float

	
class phievo.Networks.PlotGraph.Components.Edge(nodeFrom, nodeTo, label, **kwargs)

	Bases: object

Directed graph edge between two nodes.

	
compute_center(A, B, angle)

	

	
get_vector(offsets=(0, 0), angle=0)

	Generate a starting and ending point of the edge’s arrow that accomodates the desired space and between the arrow and the nodes given the node shapes.

	Parameters

	
	offsets (float,float) – offsets between the arrow and the two nodes

	angle (float) – If angle is 0, the arrow follows a straigh line between two nodes. Otherwise it is a curved line starting and arriving to the node with two opposite angles with respect to the freeAngle value

	Returns

	
	tuple containing:

	
	start (numpy.array): Start of the arrow

	end (numpy.array): End of the arrow

	Return type

	(tuple)

	
get_vector_auto(offsets=(0, 0), num=0)

	Generate a starting and ending point of the edge’s arrow that accomodates the desired space and between the arrow and the node given the node shapes. This is an implementation of get_vector for a edge that start and ends at the same edge.

	Parameters

	
	offsets (float,float) – offsets between the arrow and the two nodes

	angle (float) – Here the angle cannot be 0. The arrow is a curved line starting and arriving to the node with two opposite angles with respect to the freeAngle value.

	Returns

	
	tuple containing:

	
	start (numpy.array): Start of the arrow

	end (numpy.array): End of the arrow

	Return type

	(tuple)

	
radius(theta)

	

	
record_angle(angle)

	

	
setReceiveEdge()

	

	
set_center(center)

	

	
class phievo.Networks.PlotGraph.Components.HouseDown(*args, **kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Node

Node with a pentagon shape (⯂).

	
get_patch()

	Draw of a matplotlib patch to be added to the graph plot.

	Returns

	Matplotlib.Patch

	
radius(theta)

	Every point on the node’s boundary is refered to by an angle in rad. Given the shape of the node, compute the radius of the boundary for a angle.

\[\theta \rightarrow R \times \frac{\cos \pi/5}{\cos((5\theta - 3\pi/2)\%(2pi)/5 - \pi/5)}\]

	Parameters

	theta (float) – Angle a which to compute the distance between the center and the boundary.

	Returns

	corresponding to the radius.

	Return type

	float

	
class phievo.Networks.PlotGraph.Components.HouseUp(*args, **kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Node

Node with a pentagon shape (⬟)

	
get_patch()

	Draw of a matplotlib patch to be added to the graph plot.

	Returns

	Matplotlib.Patch

	
radius(theta)

	Every point on the node’s boundary is refered to by an angle in rad. Given the shape of the node, compute the radius of the boundary for a angle.

\[\theta \rightarrow R \times \frac{\cos \pi/5}{\cos((5\theta + 3\pi/2)\%(2pi)/5 - \pi/5)}\]

	Parameters

	theta (float) – Angle a which to compute the distance between the center and the boundary.

	Returns

	corresponding to the radius.

	Return type

	float

	
class phievo.Networks.PlotGraph.Components.Interaction(node1, node2)

	Bases: object

In the module Graph, an iteraction between node A and node B stands for at least one edge between those two node.
It is a mean to keep tracks of all the edges that exist between A and B.

	
add_edge(edge)

	Add an edge to an the existing interaction

	Parameters

	edge (Edge) – edge to be added to the list of edge references

	Returns

	None

	
get_patches(offsets=(0, 0))

	Run through the interactions edges to create a Matplotlib patch for each of them

	Parameters

	offsets (float,float) – Size 2 tuple containing the offset to leave between the edges an the node1 and node2.

	Returns

	list of Matplotlib patches

	Return type

	[Matplotlib.Patches]

	
class phievo.Networks.PlotGraph.Components.Line(**kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Edge

	
class phievo.Networks.PlotGraph.Components.Node(label, size, *args, **kwargs)

	Bases: object

Directed graph node or vertex.

	
find_freeAngle()

	Searches for the best position where to add a new edge to the node. It is used only for looping edges. It tries to increase the angle between the new angle and the already plotted edges.

	Parameters

	angle (float) – Value between 0 and 2π where an new edge arrives or leaves the node.

	Returns

	the function returns the optimal angle

	Return type

	float

	
plot_label()

	Write the node label on the plot a the node’s center.

	
record_angle(angle)

	Every point on boundary of the Node is refered to by an angle. This function records the postition each time a new edge is drawn. The list of angle is used to choose the optimal position where to add looping edges.

	Parameters

	angle (float) – Value between 0 and 2π where an new edge arrives or leaves the node.

	Returns

	None

	
set_center(pos)

	Set the coordinates of the node’s center.

	Parameters

	pos (list(float)) – Coordinates of the node’s center

	Returns

	None

	
class phievo.Networks.PlotGraph.Components.RoundedRectangle(*args, **kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Node

Node with a RoundedRectangle shape (▢).

	
get_patch()

	Draw of a matplotlib patch to be added to the graph plot.

	Returns

	Matplotlib.Patch

	
radius(theta)

	Every point on the node’s boundary is refered to by an angle in rad. Given the shape of the node, compute the radius of the boundary for a angle.

	Parameters

	theta (float) – Angle a which to compute the distance between the center and the boundary.

	Returns

	corresponding to the radius.

	Return type

	float

	
class phievo.Networks.PlotGraph.Components.Square(*args, **kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Node

Node with a square shape (◼).

	
get_patch()

	Draw of a matplotlib patch to be added to the graph plot.

	Returns

	Matplotlib.Patch

	
radius(theta)

	Every point on the node’s boundary is refered to by an angle in rad. Given the shape of the node, compute the radius of the boundary for a angle.

\[\theta \rightarrow R \times \frac{\cos \pi/4}{\cos((4\theta + 2\pi/2)\%(2pi)/4 - \pi/4)}\]

	Parameters

	theta (float) – Angle a which to compute the distance between the center and the boundary.

	Returns

	corresponding to the radius.

	Return type

	float

	
class phievo.Networks.PlotGraph.Components.TriangleDown(*args, **kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Node

Node with a triangle shape (▼).

	
get_patch()

	Draw of a matplotlib patch to be added to the graph plot.

	Returns

	Matplotlib.Patch

	
radius(theta)

	Every point on the node’s boundary is refered to by an angle in rad. Given the shape of the node, compute the radius of the boundary for a angle.

\[\theta \rightarrow R \times \frac{\cos \pi/3}{\cos((3\theta + 3\pi/2)\%(2pi)/3 - \pi/3)}\]

	Parameters

	theta (float) – Angle a which to compute the distance between the center and the boundary.

	Returns

	corresponding to the radius.

	Return type

	float

	
class phievo.Networks.PlotGraph.Components.TriangleUp(*args, **kwargs)

	Bases: phievo.Networks.PlotGraph.Components.Node

Node with a triangle shape (▲).

	
get_patch()

	Draw of a matplotlib patch to be added to the graph plot.

	Returns

	Matplotlib.Patch

	
radius(theta)

	Every point on the node’s boundary is refered to by an angle in rad. Given the shape of the node, compute the radius of the boundary for a angle.

\[\theta \rightarrow R \times \frac{\cos \pi/3}{\cos((3\theta - 3\pi/2)\%(2pi)/3 - \pi/3)}\]

	Parameters

	theta (float) – Angle a which to compute the distance between the center and the boundary.

	Returns

	corresponding to the radius.

	Return type

	float

Layout

	
phievo.Networks.PlotGraph.Layout.hierarchical_layout(node_list)

	

	
phievo.Networks.PlotGraph.Layout.layout(node_list, interaction_list, radius=1, layout='graphviz')

	Use networkx layout function to compute the node centers

	Parameters

	
	node_list (list) – List of all the nodes in the nework

	interaction_list (list) – List of tuple describing the nodes in interaction

	radius (float) – Order of magnitude for a node radius. used to scale the minimal distance.

	layout (str) – Use a networkx layout. Choose between:
- circular
- spring
- shell
- random
- spectral
- circular
- fruchterman_reingold
- pygraphviz

	Returns

	indexed by nodes names and containing their (x,y) position (for use with draw_networkx pos argument typically)

	Return type

	dict

Populations

Default evolution

Defines the Class Population with her principal method, evolution, which
evolve a set of networks. All initialization done from an initialization.py
file. All the modules are initialized through run_evolution.py.

The initial networks to evolve, can be built from just the input/output genes,
a predefined newtork, or restarted from any saved population from a previous
run. (See initialization file for details)

The time between generations is variable, and about the same for all species,
we sample the mutation rates with a gillespie like algorithm, hence the name

The evolution method will write the following files in the namefolder given
as argument to Population.__init__ stdout basic info each generation:
* Bests = for generation, the network with best fitness in text form to edit or process with stat_best_net.py
* Restart* = binary dbm type file with data to restart evolution at selected generation numbers
* graphic files with time course and best network diagram at selected generations

	
class phievo.Populations_Types.evolution_gillespie.Population(namefolder)

	Bases: object

Define a population as a list of networks called Population.
Genus and a principal method evolution.
object means it is a newstyle class ! See the web [https://wiki.python.org/moin/NewClassVsClassicClass] for distinction between new and olds style class, important for inheritance

	
best_fitness

	float – keep trace of the best fitness in the population

	
genus

	list – the list of individuals(Network) of the population

	
same_seed

	bool – indicate if the file is a restart or not

	
tgeneration

	float – starting hop time for the gillespie algorithm

	
npopulation

	int – size of te population

	
bests_file

	str – directory to save the data of evolution

	Main methods:

	evolution: launch the evolutionary algorithm
pop_mutate_and_integrate: update the whole population

	
evolution(prmt)

	Main method to evolve population

	Returns

	None

	
genus_mutate_and_integrate(prmt, nnetwork, mutation=True)

	mutate, and update the fitness of one individual

	Parameters

	
	prmt (dict) – the inits parameters for integration

	nnetwork (int) – the index of the network in the population

	mutation (bool) – a flag to activate mutation

	Returns

	the number of mutation
int: the index of the network in the population
Network: The resulting network after mutation

	Return type

	int

	
increment_identifier(network)

	Test whether the network was mutated. If so the network identifier
is updated with a new index.

	
initialize_identifier()

	Set an unique index to every network of the initial population an set the max_network_identifier
value. If the run restarts an existing simulation, only max_network_identifier is computed.

	
pop_mutate_and_integrate(initial, first_mutated, last_mutated, prmt, net_stat)

	Recompute the fitness for half the population and mutate/compute the fitness for the rest. Save all the data in net_stat

	Parameters

	
	initial (int) – index of the first individual in population

	first_mutated (int) – index of the first mutated individual in population

	last_mutated (int) – index of the last mutated individual in population

	prmt (dict) – the inits parameters for integration

	net_stat (NetworkStat) – to store the population data

	Returns

	in place modification

	Return type

	None

	
pop_sort()

	Sort the population with respect to fitness

	
save_restart_file(kgeneration, header, tgeneration)

	Save a dbm file, keyed by the generation number (a string!) and with value a
[parameter dictionary, genus]. Might be more transparent to write out Poulation instance and
forget header, and be sure to update tgeneration

	
storing(t_gen, net)

	Store the work and various data for later analysis

Network object are stored in individual pickle file in Seed{}/data
Data are stored in a shelve called the Seed{}/Bests_{}.net

	Parameters

	
	t_gen – the key (normally the generation number)

	net (Network) – the object to be saved

	Returns

	None

	
update_fitness(nnetwork, integration_result)

	Update (in place) the fitness and the dlt_fitness

	Parameters

	
	nnetwork (int) – the index of the network in the population

	integration_result (list) – the output of compile_and_integrate

	Returns

	in place modification

	Return type

	None

	
phievo.Populations_Types.evolution_gillespie.fitness_treatment(population)

	default function for fitness treatment

If necessary, should be implemented in the init*.py file

	
phievo.Populations_Types.evolution_gillespie.init_network(mutation)

	Default function to create network

It must be overwritten with function from the init*.py file
otherwise stop the programm

	
phievo.Populations_Types.evolution_gillespie.restart(directory, generation, verbose=True)

	Allow the user to restart an old run

	Parameters

	
	directory (str) – the directory of the restart file

	generation (int) – the generation number

	Returns

	the parameters of the run
genus (list): the list of individuals(Network) of the population

	Return type

	rprmt (dict)

Pareto evolution

This module provide a pareto_Population class to perform a Pareto evolution,
that is, a general frame to evolve Networks according to more than one fitness
function.

See: Warmflash, A., Francois, P., & Siggia, E. D. (2012).
Pareto Evolution of Gene Networks: An Algorithm to Optimize
Multiple Fitness Objectives. Physical Biology, 9(5), 56001.

Coder: A. Warmflash, P. François

	
phievo.Populations_Types.pareto_population.compdist(x, y, n_functions)

	Compute the distance between the fitness of x and y

	
class phievo.Populations_Types.pareto_population.pareto_Population(namefolder, nfunctions, rshare)

	Bases: phievo.Populations_Types.evolution_gillespie.Population

Update the Population to manage a Pareto evolution

Note that we dynamically change the fitness of the individuals to give
them a list-like fitness.

	
nfunctions

	int – number of functions taken into account by pareto

	
rshare

	float – parameter for the fitness sharing

	
pop_fitness_share()

	Use fitness sharing to increase the diversity of the population.

That is, it augment the rank of inidividual to close from each other
to promote diversity in the population.
The implementation is a variant on the basic fitness sharing algorithm
in section II of Cioppa et al. IEEE Trans. Evol Comp. 11:453

	
pop_print_pareto(f_pop, f_best)

	Write various information about population in files f_pop and

	Parameters

	
	f_pop (str) – short description of all individuals

	f_best (str) – complete description of the first rank only

	
pop_sort(verbose=False)

	Perform a pareto sorting of the population using the Goldberg algorithm.

See Van Velhuizen and Lamont. Evol Computation. 8:125 (2000) for details
To avoid having population dominated by 0,0 function assigns lowest rank
to networks with this score.

	
update_fitness(nnetwork, integration_result)

	Update (in place) all the fitnesses and the corresponding dlt_fitness

	Parameters

	
	nnetwork (int) – the index of the network in the population

	integration_result (list) – the output of compile_and_integrate

	
class phievo.Populations_Types.pareto_population.pareto_thread_Population(namefolder, nfunctions, rshare)

	Bases: phievo.Populations_Types.pareto_population.pareto_Population, phievo.Populations_Types.thread_population.thread_Population

Update the pareto_Population class to allow threading

Note, when looking for inherited method, python always choose
the right most first (here pareto_Population).

	
pop_mutate_and_integrate(initial, first_mutated, last_mutated, prmt, net_stat)

	Recompute the fitness for half the population and mutate/compute the fitness for the rest.
Save all the data in net_stat

	Parameters

	
	initial (int) – index of the first individual in population

	first_mutated (int) – index of the first mutated individual in population

	last_mutated (int) – index of the last mutated individual in population

	prmt (dict) – the inits parameters for integration

	net_stat (NetworkStat) – to store the population data

	Returns

	in place modification

	Return type

	None

	
phievo.Populations_Types.pareto_population.pcompare(x, y, n_functions)

	Perform a pareto comparison of two networks based on
their different fitness

	Parameters

	
	x,y (Network) – the object to compare

	n_functions (int) – the number of function taken into account

	Returns

	the comparison of x & y (1 if x>y), 0 indicates that they are pareto equivalent

	
phievo.Populations_Types.pareto_population.single_comparison(x, y)

	Compare two numbers and return 1 if x>y, -1 if x<y and 0 otherwise

Analysis tools

Simulation

	
class phievo.AnalysisTools.Simulation.Genealogy(seed)

	Bases: object

	
compare_ss_wrt_parent(sim, child, parent)

	

	
get_network_from_identifier(net_ind)

	

	
load_sort_networks()

	Loads an existing network classification

	
plot_compare_multiple_networks(sim, indexes, cell=0)

	Print a svg figure of the cell profile,time series and the network layout in
the seed folder.

	
plot_front_genealogy(generations, extra_networks_info=[], filename='')

	Uses the seed plot_pareto_fronts function to display the pareto fronts.
In addition, the function allows to plots extra networks in the fitness plan

	Parameters

	
	generations – list of generation indexes

	extra_networks_indexes – list of extra network informatino dictionaries.

	
plot_lineage_fitness(line, formula='{}', highlighted_mutations=[])

	

	
plot_mutation_fitness_deviation(only_one_mutation=True, networks=None, ploted_ratio=1)

	Plot the deviation of fitness in the fitness space caused by a generation’s mutation.

	Arg:

	only_one_mutation (bool): If True, plot only the networks that undergone only a single mutation durign a generation.

	
scatter_pareto_accross_generations(generation, front_to_plot, xrange, yrange, step=1)

	

	
search_ancestors(network)

	

	
sort_networks(verbose=False, write_pickle=True)

	Order the networks, by the label_ind, in a dictionary.
The dictonary contains the most useful information but takes last space.
The information dictionaries is easier to handle than the actual networks.

	Parameters

	
	verbose – print information during sorting

	write_pickle – backup the sorting information in a pickle file

	Returns

	dictionary. A key is associated to each network

	
class phievo.AnalysisTools.Simulation.Seed(path)

	Bases: object

This is a container to load the information about a Simulation seed. It contains mainly the indexes of the generations and some extra utilities to analyse them.

	
compute_best_fitness(generation)

	

	
custom_plot(X, Y)

	
	Plot the Y as a function of X. X and Y can be chosen in the keys of

	self.observables.

	Parameters

	
	seed (int) – number of the seed to look at

	X (str) – x-axis observable

	Y (list) – list (or string) of y-axis observable

	
get_backup_net(generation, index)

	Get network from the backup file(or restart). In opposition to the best_net file
the restart file is note stored at every generation but it contains a full
population. This funciton allows to grab any individual of the population when
the generation is stored

	Parameters

	
	generation – index of the generation (must be a stored generation)

	index – index of the network within its generation

	Returns

	the selected network object

	
get_backup_pop(generation)

	Cf get_backup_net. Get the complete population of networks for a generation that
was backuped.

	Parameters

	generation – index of the generation (must be a stored generation)

	Returns

	List of the networks present in the population at the selected generation

	
get_best_net(generation)

	The functions returns the best network of the selected generation

	Parameters

	seed (int) – number of the seed to look at

	Returns

	the best network for the selected generation

	Return type

	Networks

	
show_fitness(smoothen=0, **kwargs)

	Plot the fitness as a function of time

	
stored_generation_indexes()

	Return the list of the stored generation indexes

	Returns

	list of the stored generation indexes

	
class phievo.AnalysisTools.Simulation.Seed_Pareto(path, nbFunctions)

	Bases: phievo.AnalysisTools.Simulation.Seed

	
pareto_generate_fit_dict(generations, max_rank=1)

	Load fitness data for the selected generations and format them to be
understandable by plot_pareto_fronts

	
plot_pareto_fronts(generations, max_rank=1, with_indexes=False, legend=False, xlim=[], ylim=[], colors=[], gradient=[], xlabel='F_1', ylabel='F_2', s=50, no_popup=False)

	Plot every the network of the selected generations in the (F_1,F_2) fitness space.

	Parameters

	
	generations (list) – list of the selected generations

	max_rank (int) – In given population plot only the network of rank <=max_rank

	with_indexes (bool) – NotImplemented

	legend (bool) – NotImplemented

	xlim (list) – [xmax,xmin]

	ylim (list) – [ymax,ymin]

	colors (list) – List of html colors, one for each generation

	gradient (list) – List of colors to include in the gradient

	xlabel (str) – Label of the xaxis

	ylabel (str) – Label of the yaxis

	s (float) – marker size

	no_popup (bool) – prevents the popup of the plot windows

	Returns

	matplotlib figure

	
show_fitness(smoothen=0, index=None)

	Plot the fitness as a function of time

	Parameters

	
	seed (int) – the seed-number of the run

	index (array) – index of of the fitness to plot. If None, all the fitnesses are ploted

	Returns

	Matplolib figure

	
class phievo.AnalysisTools.Simulation.Simulation(path, mode='default')

	Bases: object

The simulation class is a container in which the informations about a simulation are unpacked. This is used for easy access to a simulation results.

	
PlotData(data, xlabel, ylabel, select_genes=[], no_popup=False, legend=True, lw=1, ax=None)

	Function in charge of the call to matplotlib for both Plot_TimeCourse and Plot_Profile.

	
Plot_Profile(trial_index, time=0, select_genes=[], no_popup=False, legend=True, lw=1, ax=None)

	Searches in the data last stored in the Simulation buffer for the time course
corresponding to the trial_index and plot the gene profile along the cells at
the selected time point.

	Parameters

	
	trial_index – index of the trial you. Refere to run_dynamics to know how

	trials there are. (many) –

	time – Index of the time to select

	select_genes – list of gene indexes to plot

	no_popup – False by default. Option used to forbid matplotlib popup windows
Useful when saving figures to a file.

	Returns

	figure

	
Plot_TimeCourse(trial_index, cell=0, select_genes=[], no_popup=False, legend=True, lw=1, ax=None)

	Searches in the data last stored in the Simulation buffer for the time course
corresponding to the trial_index and the cell and plot the gene time series

	Parameters

	
	trial_index – index of the trial you. Refere to run_dynamics to know how

	trials there are. (many) –

	cell – Index of the cell to plot

	select_genes – list of gene indexes to plot

	no_popup – False by default. Option used to forbid matplotlib popup windows
Useful when saving figures to a file.

	Returns

	figure

	
clear_buffer()

	Clears the variable self.buffer_data.

	
custom_plot(seed, X, Y)

	Plot the Y as a function of X. X and Y can be chosen in the list [“fitness”,”generation”,”n_interactions”,”n_species”]

	Parameters

	
	seed (int) – number of the seed to look at

	X (str) – x-axis observable

	Y (str) – y-axis observable

	
get_backup_net(seed, generation, index)

	Get network from the backup file(or restart). In opposition to the best_net file
the restart file is note stored at every generation but it contains a full
population. This funciton allows to grab any individual of the population when
the generation is stored

	Parameters

	
	seed – index of the seed

	generation – index of the generation (must be a stored generation)

	index – index of the network within its generation

	Returns

	The selected network object

	
get_backup_pop(seed, generation)

	Cf get_backup_net. Get the complete population of networks for a generation that
was backuped.

	Parameters

	
	seed – index of the seed

	generation – index of the generation (must be a stored generation)

	Returns

	List of the networks present in the population at the selected generation

	
get_best_net(seed, generation)

	The functions returns the best network of the selected generation

	Parameters

	
	seed (int) – number of the seed to look at

	generation (int) – number of the generation

	Returns

	The best network for the selected generation

	
get_genealogy(seed)

	

	
load_Profile_data(trial_index, time)

	Loads the data from the simulation and generate ready to plot data.
:param trial_index: index of the trial you. Refere to run_dynamics to know how
:param many trials there are.:
:param time: Index of the time to select

	
run_dynamics(net=None, trial=1, erase_buffer=False, return_treatment_fitness=False)

	Run Dynamics for the selected network. The function either needs the network as an argument or the seed and generation information to select it. If a network is provided, seed and generation are ignored.

	Parameters

	
	net (Networks) – network to simulate

	trial (int) – Number of independent simulation to run

	Returns

	data (dict) dictionnary containing the time steps
at the “time” key, the network at “net” and the corresponding
time series for index of the trial.

	net : Network

	time : time list

	outputs: list of output indexes

	inputs: list of input indexes

	
	0data for trial 0

	
	
	0array for cell 0:

	
g0 g1 g2 g3 ..

t0 .
t1 .
t2 .
.
.

	
show_fitness(seed, smoothen=0, **kwargs)

	Plot the fitness as a function of time

	Parameters

	seed (int) – the seed-number of the run

	Returns

	matplotlib figure

	
stored_generation_indexes(seed)

	Return the list of the stored generation indexes

	Parameters

	seed (int) – Index of Seed, you want the stored generation for.

	Returns

	list of the stored generation indexes

Palette

	
phievo.AnalysisTools.palette.HSL_to_RGB(h, s, l)

	Converts HSL colorspace (Hue/Saturation/Value) to RGB colorspace.
Formula from http://www.easyrgb.com/math.php?MATH=M19#text19

	Parameters

	
	h (float) – Hue (0…1, but can be above or below
(This is a rotation around the chromatic circle))

	s (float) – Saturation (0…1) (0=toward grey, 1=pure color)

	l (float) – Lightness (0…1) (0=black 0.5=pure color 1=white)

	Returns

	Corresponding RGB values

	Return type

	(r,g,b) (integers 0…255)

Examples

>>> print HSL_to_RGB(0.7,0.7,0.6)
(110, 82, 224)
>>> r,g,b = HSL_to_RGB(0.7,0.7,0.6)
>>> print g
82

	
phievo.AnalysisTools.palette.color_generate(n, colormap=None)

	Returns a palette of colors suited for charting.

	Parameters

	
	n (int) – The number of colors to return

	colormap (str) – matplotlib colormap name
http://matplotlib.org/examples/color/colormaps_reference.html

	Returns

	A list of colors in HTML notation (eg.[‘#cce0ff’, ‘#ffcccc’, ‘#ccffe0’, ‘#f5ccff’, ‘#f5ffcc’])

	Return type

	list

Example

>>> print color_generate(5)
['#5fcbff','#e5edad','#f0b99b','#c3e5e4','#ffff64']

	
phievo.AnalysisTools.palette.floatrange(start, stop, steps)

	Computes a range of floating value.

	Parameters

	
	start (float) – Start value.

	end (float) – End value

	steps (integer) – Number of values

	Returns

	A list of floats with fixed step

	Return type

	list

Example

>>> print floatrange(0.25, 1.3, 5)
[0.25, 0.51249999999999996, 0.77500000000000002, 1.0375000000000001, 1.3]

	
phievo.AnalysisTools.palette.generate_gradient(values, seq)

	Generates a desired list of colors along a gradient from a custom list of colors.

	Parameters

	
	values – list of values that need to ba allocated to a color

	seq – sequence of colors in the gradient

	
phievo.AnalysisTools.palette.make_colormap(seq)

	Return a LinearSegmentedColormap
seq: a sequence of floats and RGB-tuples. The floats should be increasing
and in the interval (0,1).

	
phievo.AnalysisTools.palette.update_default_colormap(colormap)

	Update the color map used by the palette modules

	Arg:

	
	colormap (str): name of the matplotlib colormap

	http://matplotlib.org/examples/color/colormaps_reference.html

extra_functions

	
phievo.AnalysisTools.main_functions.download_example(example_name, directory=None)

	Download an example seed or project.

	
phievo.AnalysisTools.main_functions.download_tools(run_evolution='run_evolution.py', AnalyseRun='AnalyseRun.ipynb', ProjectCreator='ProjectCreator.ipynb')

	

	
phievo.AnalysisTools.main_functions.download_zip(dir_name, url)

	Download and extract zip file to dir_name.

	
phievo.AnalysisTools.main_functions.load_generation_data(generations, restart_file)

	Searches in the restart file the the informations that has been backed up
up about the individuals at a given generations.

	Parameters

	
	generations (list) – index of the generations to load_generation_data

	restart_file – path of the restart_file

	Returns

	dictionary where each key contains the informations about one generation.

	
phievo.AnalysisTools.main_functions.read_network(filename, verbose=False)

	Retrieve a whole network from a pickle object named filename

	Parameters

	filename (str) – the directory where the object is saved

	Returns

	The stored network

	
phievo.AnalysisTools.main_functions.smoothing(array, param)

	Smoothen an array by averaging over the neighbourhood

	Parameters

	
	array (list) – the to be smoothed array

	param (int) – the distance of the neighbourhood

	Returns

	list of same size as array

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 phievo	

 	
 	
 phievo.AnalysisTools.main_functions	

 	
 	
 phievo.AnalysisTools.palette	

 	
 	
 phievo.AnalysisTools.Simulation	

 	
 	
 phievo.Networks.classes_eds2	

 	
 	
 phievo.Networks.CorePromoter	

 	
 	
 phievo.Networks.Degradation	

 	
 	
 phievo.Networks.deriv2	

 	
 	
 phievo.Networks.lovelyGraph	

 	
 	
 phievo.Networks.mutation	

 	
 	
 phievo.Networks.Phosphorylation	

 	
 	
 phievo.Networks.PlotGraph.Components	

 	
 	
 phievo.Networks.PlotGraph.Graph	

 	
 	
 phievo.Networks.PlotGraph.Layout	

 	
 	
 phievo.Networks.PPI	

 	
 	
 phievo.Networks.TFHill	

 	
 	
 phievo.Populations_Types.evolution_gillespie	

 	
 	
 phievo.Populations_Types.pareto_population	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	activator_required (phievo.Networks.classes_eds2.Network attribute)

 	add_CorePromoter2Species() (in module phievo.Networks.CorePromoter)

 	(phievo.Networks.classes_eds2.Network method)

 	add_edge() (phievo.Networks.PlotGraph.Components.Interaction method)

 	(phievo.Networks.PlotGraph.Graph.Graph method)

 	add_Node() (phievo.Networks.classes_eds2.Network method)

 	add_node() (phievo.Networks.PlotGraph.Graph.Graph method)

 	
 	add_TFHill() (in module phievo.Networks.TFHill)

 	(phievo.Networks.classes_eds2.Network method)

 	add_TModule2CorePromoter() (in module phievo.Networks.CorePromoter)

 	(phievo.Networks.classes_eds2.Network method)

 	add_type() (phievo.Networks.classes_eds2.Species method)

 	all_params2C() (in module phievo.Networks.deriv2)

 	Arrow (class in phievo.Networks.PlotGraph.Components)

B

 	
 	BarB (class in phievo.Networks.PlotGraph.Components)

 	best_fitness (phievo.Populations_Types.evolution_gillespie.Population attribute)

 	bests_file (phievo.Populations_Types.evolution_gillespie.Population attribute)

 	
 	Bezier() (in module phievo.Networks.PlotGraph.Components)

 	build_lists() (in module phievo.Networks.mutation)

 	build_mutations() (phievo.Networks.mutation.Mutable_Network method)

C

 	
 	catal_data() (phievo.Networks.classes_eds2.Network method)

 	Ccompiler (in module phievo.Networks.deriv2)

 	cfile (in module phievo.Networks.deriv2)

 	change_type() (phievo.Networks.classes_eds2.Species method)

 	check_consistency() (in module phievo.Networks.classes_eds2)

 	check_existing_binary() (phievo.Networks.classes_eds2.Network method)

 	check_existing_Degradation() (in module phievo.Networks.Degradation)

 	(phievo.Networks.classes_eds2.Network method)

 	check_existing_link() (phievo.Networks.classes_eds2.Network method)

 	check_existing_Phosphorylation() (in module phievo.Networks.Phosphorylation)

 	(phievo.Networks.classes_eds2.Network method)

 	check_grammar() (phievo.Networks.classes_eds2.Interaction method)

 	(phievo.Networks.Degradation.Degradation method)

 	(phievo.Networks.PPI.PPI method)

 	(phievo.Networks.Phosphorylation.Phosphorylation method)

 	check_Node() (phievo.Networks.classes_eds2.Network method)

 	Circle (class in phievo.Networks.PlotGraph.Components)

 	
 	clean_Nodes() (phievo.Networks.classes_eds2.Network method)

 	clean_type() (phievo.Networks.classes_eds2.Species method)

 	clear_buffer() (phievo.AnalysisTools.Simulation.Simulation method)

 	color_generate() (in module phievo.AnalysisTools.palette)

 	compare_node() (in module phievo.Networks.classes_eds2)

 	compare_ss_wrt_parent() (phievo.AnalysisTools.Simulation.Genealogy method)

 	compdist() (in module phievo.Populations_Types.pareto_population)

 	compile_and_integrate() (in module phievo.Networks.deriv2)

 	compute_best_fitness() (phievo.AnalysisTools.Simulation.Seed method)

 	compute_center() (phievo.Networks.PlotGraph.Components.Edge method)

 	compute_Cseed() (phievo.Networks.mutation.Mutable_Network method)

 	compute_leap() (in module phievo.Networks.deriv2)

 	compute_next_mutation() (phievo.Networks.mutation.Mutable_Network method)

 	compute_transcription() (in module phievo.Networks.TFHill)

 	CorePromoter (class in phievo.Networks.CorePromoter)

 	Cseed (phievo.Networks.classes_eds2.Network attribute)

 	custom_plot() (phievo.AnalysisTools.Simulation.Seed method)

 	(phievo.AnalysisTools.Simulation.Simulation method)

D

 	
 	data_evolution (phievo.Networks.mutation.Mutable_Network attribute)

 	data_next_mutation (phievo.Networks.mutation.Mutable_Network attribute)

 	def_label() (phievo.Networks.classes_eds2.Species method)

 	default_tags (phievo.Networks.classes_eds2.Species attribute)

 	degrad_deriv_inC() (in module phievo.Networks.deriv2)

 	Degradation (class in phievo.Networks.Degradation)

 	Degradation_deriv_inC() (in module phievo.Networks.Degradation)

 	delay (phievo.Networks.CorePromoter.CorePromoter attribute)

 	delete_clean() (phievo.Networks.classes_eds2.Network method)

 	dephosphorylation (phievo.Networks.Phosphorylation.Phosphorylation attribute)

 	dict_types (phievo.Networks.classes_eds2.Network attribute)

 	dlt_fitness (phievo.Networks.mutation.Mutable_Network attribute)

 	
 	download_example() (in module phievo.AnalysisTools.main_functions)

 	download_tools() (in module phievo.AnalysisTools.main_functions)

 	download_zip() (in module phievo.AnalysisTools.main_functions)

 	draw() (phievo.Networks.classes_eds2.Network method)

 	(phievo.Networks.PlotGraph.Graph.Graph method)

 	duplicate_downstream_interactions() (phievo.Networks.classes_eds2.Network method)

 	duplicate_gene() (in module phievo.Networks.CorePromoter)

 	(phievo.Networks.classes_eds2.Network method)

 	duplicate_PPI() (in module phievo.Networks.PPI)

 	(phievo.Networks.classes_eds2.Network method)

 	duplicate_species_and_interactions() (phievo.Networks.classes_eds2.Network method)

 	duplicate_TFHill() (in module phievo.Networks.TFHill)

 	(phievo.Networks.classes_eds2.Network method)

E

 	
 	Edge (class in phievo.Networks.PlotGraph.Components)

 	
 	edge_list() (phievo.Networks.PlotGraph.Graph.Graph method)

 	evolution() (phievo.Populations_Types.evolution_gillespie.Population method)

F

 	
 	find_freeAngle() (phievo.Networks.PlotGraph.Components.Node method)

 	fitness_treatment() (in module phievo.Populations_Types.evolution_gillespie)

 	
 	fixed_activity_for_TF (phievo.Networks.classes_eds2.Network attribute)

 	floatrange() (in module phievo.AnalysisTools.palette)

G

 	
 	Genealogy (class in phievo.AnalysisTools.Simulation)

 	generate_gradient() (in module phievo.AnalysisTools.palette)

 	genus (phievo.Populations_Types.evolution_gillespie.Population attribute)

 	genus_mutate_and_integrate() (phievo.Populations_Types.evolution_gillespie.Population method)

 	get_autoPatch() (phievo.Networks.PlotGraph.Components.Arrow method)

 	get_backup_net() (phievo.AnalysisTools.Simulation.Seed method)

 	(phievo.AnalysisTools.Simulation.Simulation method)

 	get_backup_pop() (phievo.AnalysisTools.Simulation.Seed method)

 	(phievo.AnalysisTools.Simulation.Simulation method)

 	get_best_net() (phievo.AnalysisTools.Simulation.Seed method)

 	(phievo.AnalysisTools.Simulation.Simulation method)

 	get_genealogy() (phievo.AnalysisTools.Simulation.Simulation method)

 	get_network_from_identifier() (phievo.AnalysisTools.Simulation.Genealogy method)

 	get_networkx() (phievo.Networks.PlotGraph.Graph.Graph method)

 	
 	get_node() (phievo.Networks.classes_eds2.Network method)

 	get_patch() (phievo.Networks.PlotGraph.Components.Arrow method)

 	(phievo.Networks.PlotGraph.Components.Circle method)

 	(phievo.Networks.PlotGraph.Components.HouseDown method)

 	(phievo.Networks.PlotGraph.Components.HouseUp method)

 	(phievo.Networks.PlotGraph.Components.RoundedRectangle method)

 	(phievo.Networks.PlotGraph.Components.Square method)

 	(phievo.Networks.PlotGraph.Components.TriangleDown method)

 	(phievo.Networks.PlotGraph.Components.TriangleUp method)

 	get_patches() (phievo.Networks.PlotGraph.Components.Interaction method)

 	get_vector() (phievo.Networks.PlotGraph.Components.Edge method)

 	get_vector_auto() (phievo.Networks.PlotGraph.Components.Edge method)

 	gettype() (in module phievo.Networks.lovelyGraph)

 	Graph (class in phievo.Networks.PlotGraph.Graph)

 	graph (phievo.Networks.classes_eds2.Network attribute)

H

 	
 	hash_topology (phievo.Networks.classes_eds2.Network attribute)

 	hierarchical_layout() (in module phievo.Networks.PlotGraph.Layout)

 	hill (phievo.Networks.Phosphorylation.Phosphorylation attribute)

 	
 	HouseDown (class in phievo.Networks.PlotGraph.Components)

 	HouseUp (class in phievo.Networks.PlotGraph.Components)

 	HSL_to_RGB() (in module phievo.AnalysisTools.palette)

I

 	
 	id (phievo.Networks.classes_eds2.Node attribute)

 	increment_identifier() (phievo.Populations_Types.evolution_gillespie.Population method)

 	init_network() (in module phievo.Populations_Types.evolution_gillespie)

 	initialize_identifier() (phievo.Populations_Types.evolution_gillespie.Population method)

 	input (phievo.Networks.CorePromoter.CorePromoter attribute)

 	(phievo.Networks.Degradation.Degradation attribute)

 	(phievo.Networks.Phosphorylation.Phosphorylation attribute)

 	
 	int_id() (phievo.Networks.classes_eds2.Node method)

 	Interaction (class in phievo.Networks.classes_eds2)

 	(class in phievo.Networks.PlotGraph.Components)

 	isinstance() (phievo.Networks.classes_eds2.Node method)

 	(phievo.Networks.classes_eds2.Species method)

 	isremovable() (phievo.Networks.classes_eds2.Node method)

L

 	
 	label (phievo.Networks.classes_eds2.Species attribute)

 	(phievo.Networks.CorePromoter.CorePromoter attribute)

 	(phievo.Networks.Degradation.Degradation attribute)

 	(phievo.Networks.Phosphorylation.Phosphorylation attribute)

 	layout() (in module phievo.Networks.PlotGraph.Layout)

 	(phievo.Networks.PlotGraph.Graph.Graph method)

 	ligand_fct() (in module phievo.Networks.mutation)

 	
 	Line (class in phievo.Networks.PlotGraph.Components)

 	list_possible_Degradation() (in module phievo.Networks.Degradation)

 	(phievo.Networks.classes_eds2.Network method)

 	list_types() (phievo.Networks.classes_eds2.Node method)

 	(phievo.Networks.classes_eds2.Species method)

 	load_generation_data() (in module phievo.AnalysisTools.main_functions)

 	load_Profile_data() (phievo.AnalysisTools.Simulation.Simulation method)

 	load_sort_networks() (phievo.AnalysisTools.Simulation.Genealogy method)

M

 	
 	make_colormap() (in module phievo.AnalysisTools.palette)

 	Mutable_Network (class in phievo.Networks.mutation)

 	
 	mutate_and_integrate() (phievo.Networks.mutation.Mutable_Network method)

 	mutate_Node() (phievo.Networks.mutation.Mutable_Network method)

N

 	
 	Network (class in phievo.Networks.classes_eds2)

 	new_custom_random_gene() (in module phievo.Networks.CorePromoter)

 	(phievo.Networks.classes_eds2.Network method)

 	new_Degradation() (in module phievo.Networks.Degradation)

 	(phievo.Networks.classes_eds2.Network method)

 	new_enhancer() (in module phievo.Networks.CorePromoter)

 	(phievo.Networks.classes_eds2.Network method)

 	new_gene() (in module phievo.Networks.CorePromoter)

 	(phievo.Networks.classes_eds2.Network method)

 	new_Phosphorylation() (in module phievo.Networks.Phosphorylation)

 	(phievo.Networks.classes_eds2.Network method)

 	new_PPI() (in module phievo.Networks.PPI)

 	(phievo.Networks.classes_eds2.Network method)

 	new_random_Degradation() (in module phievo.Networks.Degradation)

 	(phievo.Networks.mutation.Mutable_Network method)

 	new_random_Phosphorylation() (in module phievo.Networks.Phosphorylation)

 	(phievo.Networks.mutation.Mutable_Network method)

 	new_random_PPI() (in module phievo.Networks.PPI)

 	(phievo.Networks.mutation.Mutable_Network method)

 	
 	new_random_TFHill() (in module phievo.Networks.TFHill)

 	(phievo.Networks.mutation.Mutable_Network method)

 	new_Species() (phievo.Networks.classes_eds2.Network method)

 	new_TFHill() (in module phievo.Networks.TFHill)

 	(phievo.Networks.classes_eds2.Network method)

 	nfunctions (phievo.Populations_Types.pareto_population.pareto_Population attribute)

 	Node (class in phievo.Networks.classes_eds2)

 	(class in phievo.Networks.PlotGraph.Components)

 	node_list() (phievo.Networks.PlotGraph.Graph.Graph method)

 	noise_flag (in module phievo.Networks.deriv2)

 	npopulation (phievo.Populations_Types.evolution_gillespie.Population attribute)

 	number_Degradation() (in module phievo.Networks.Degradation)

 	(phievo.Networks.classes_eds2.Network method)

 	number_nodes() (phievo.Networks.classes_eds2.Network method)

 	number_Phosphorylation() (in module phievo.Networks.Phosphorylation)

 	(phievo.Networks.classes_eds2.Network method)

 	number_PPI() (in module phievo.Networks.PPI)

 	(phievo.Networks.classes_eds2.Network method)

 	number_TFHill() (in module phievo.Networks.TFHill)

 	(phievo.Networks.classes_eds2.Network method)

O

 	
 	order_node (phievo.Networks.classes_eds2.Network attribute)

 	output (phievo.Networks.CorePromoter.CorePromoter attribute)

 	(phievo.Networks.Degradation.Degradation attribute)

 	(phievo.Networks.Phosphorylation.Phosphorylation attribute)

 	
 	outputs_to_delete() (phievo.Networks.classes_eds2.Node method)

 	(phievo.Networks.CorePromoter.CorePromoter method)

 	(phievo.Networks.Degradation.Degradation method)

 	(phievo.Networks.PPI.PPI method)

 	(phievo.Networks.Phosphorylation.Phosphorylation method)

P

 	
 	parameters (phievo.Networks.classes_eds2.Species attribute)

 	pareto_generate_fit_dict() (phievo.AnalysisTools.Simulation.Seed_Pareto method)

 	pareto_Population (class in phievo.Populations_Types.pareto_population)

 	pareto_thread_Population (class in phievo.Populations_Types.pareto_population)

 	pcompare() (in module phievo.Populations_Types.pareto_population)

 	phievo.AnalysisTools.main_functions (module)

 	phievo.AnalysisTools.palette (module)

 	phievo.AnalysisTools.Simulation (module)

 	phievo.Networks.classes_eds2 (module)

 	phievo.Networks.CorePromoter (module)

 	phievo.Networks.Degradation (module)

 	phievo.Networks.deriv2 (module)

 	phievo.Networks.lovelyGraph (module)

 	phievo.Networks.mutation (module)

 	phievo.Networks.Phosphorylation (module)

 	phievo.Networks.PlotGraph.Components (module)

 	phievo.Networks.PlotGraph.Graph (module)

 	phievo.Networks.PlotGraph.Layout (module)

 	phievo.Networks.PPI (module)

 	phievo.Networks.TFHill (module)

 	phievo.Populations_Types.evolution_gillespie (module)

 	phievo.Populations_Types.pareto_population (module)

 	Phospho_deriv_inC() (in module phievo.Networks.Phosphorylation)

 	Phosphorylation (class in phievo.Networks.Phosphorylation)

 	plot_compare_multiple_networks() (phievo.AnalysisTools.Simulation.Genealogy method)

 	plot_front_genealogy() (phievo.AnalysisTools.Simulation.Genealogy method)

 	
 	plot_label() (phievo.Networks.PlotGraph.Components.Node method)

 	plot_lineage_fitness() (phievo.AnalysisTools.Simulation.Genealogy method)

 	plot_mutation_fitness_deviation() (phievo.AnalysisTools.Simulation.Genealogy method)

 	plot_pareto_fronts() (phievo.AnalysisTools.Simulation.Seed_Pareto method)

 	Plot_Profile() (phievo.AnalysisTools.Simulation.Simulation method)

 	Plot_TimeCourse() (phievo.AnalysisTools.Simulation.Simulation method)

 	PlotData() (phievo.AnalysisTools.Simulation.Simulation method)

 	pop_fitness_share() (phievo.Populations_Types.pareto_population.pareto_Population method)

 	pop_mutate_and_integrate() (phievo.Populations_Types.evolution_gillespie.Population method)

 	(phievo.Populations_Types.pareto_population.pareto_thread_Population method)

 	pop_print_pareto() (phievo.Populations_Types.pareto_population.pareto_Population method)

 	pop_sort() (phievo.Populations_Types.evolution_gillespie.Population method)

 	(phievo.Populations_Types.pareto_population.pareto_Population method)

 	Population (class in phievo.Populations_Types.evolution_gillespie)

 	PPI (class in phievo.Networks.PPI)

 	PPI_deriv_inC() (in module phievo.Networks.PPI)

 	pretty_graph() (in module phievo.Networks.lovelyGraph)

 	print_node() (phievo.Networks.classes_eds2.Node method)

 	produce_CorePromoter_name() (in module phievo.Networks.lovelyGraph)

 	produce_Degradation_name() (in module phievo.Networks.lovelyGraph)

 	produce_Phospho_name() (in module phievo.Networks.lovelyGraph)

 	produce_PPI_name() (in module phievo.Networks.lovelyGraph)

 	produce_species_name() (in module phievo.Networks.lovelyGraph)

 	produce_TFHill_name() (in module phievo.Networks.lovelyGraph)

 	produce_TModule_name() (in module phievo.Networks.lovelyGraph)

 	propagate_activity_TFHill() (in module phievo.Networks.TFHill)

 	(phievo.Networks.classes_eds2.Network method)

R

 	
 	radius() (phievo.Networks.PlotGraph.Components.Circle method)

 	(phievo.Networks.PlotGraph.Components.Edge method)

 	(phievo.Networks.PlotGraph.Components.HouseDown method)

 	(phievo.Networks.PlotGraph.Components.HouseUp method)

 	(phievo.Networks.PlotGraph.Components.RoundedRectangle method)

 	(phievo.Networks.PlotGraph.Components.Square method)

 	(phievo.Networks.PlotGraph.Components.TriangleDown method)

 	(phievo.Networks.PlotGraph.Components.TriangleUp method)

 	rand_modify() (in module phievo.Networks.mutation)

 	(phievo.Networks.classes_eds2.Node method)

 	Random (phievo.Networks.mutation.Mutable_Network attribute)

 	random_add_output() (phievo.Networks.mutation.Mutable_Network method)

 	random_change_output() (phievo.Networks.mutation.Mutable_Network method)

 	random_Degradation() (in module phievo.Networks.Degradation)

 	(phievo.Networks.mutation.Mutable_Network method)

 	random_duplicate() (phievo.Networks.mutation.Mutable_Network method)

 	random_enhancer() (in module phievo.Networks.CorePromoter)

 	(phievo.Networks.mutation.Mutable_Network method)

 	random_gene() (in module phievo.Networks.CorePromoter)

 	(phievo.Networks.mutation.Mutable_Network method)

 	random_Interaction() (phievo.Networks.mutation.Mutable_Network method)

 	
 	random_parameters() (in module phievo.Networks.mutation)

 	random_Phosphorylation() (in module phievo.Networks.Phosphorylation)

 	(phievo.Networks.mutation.Mutable_Network method)

 	random_PPI() (in module phievo.Networks.PPI)

 	(phievo.Networks.mutation.Mutable_Network method)

 	random_remove_output() (phievo.Networks.mutation.Mutable_Network method)

 	random_Species() (phievo.Networks.mutation.Mutable_Network method)

 	random_TFHill() (in module phievo.Networks.TFHill)

 	(phievo.Networks.mutation.Mutable_Network method)

 	rate (phievo.Networks.Degradation.Degradation attribute)

 	(phievo.Networks.Phosphorylation.Phosphorylation attribute)

 	read_network() (in module phievo.AnalysisTools.main_functions)

 	record_angle() (phievo.Networks.PlotGraph.Components.Edge method)

 	(phievo.Networks.PlotGraph.Components.Node method)

 	remove_Interaction() (phievo.Networks.mutation.Mutable_Network method)

 	remove_Node() (phievo.Networks.classes_eds2.Network method)

 	remove_output_when_duplicate (phievo.Networks.classes_eds2.Network attribute)

 	restart() (in module phievo.Populations_Types.evolution_gillespie)

 	RoundedRectangle (class in phievo.Networks.PlotGraph.Components)

 	rshare (phievo.Populations_Types.pareto_population.pareto_Population attribute)

 	run_dynamics() (phievo.AnalysisTools.Simulation.Simulation method)

S

 	
 	same_seed (phievo.Populations_Types.evolution_gillespie.Population attribute)

 	sample_dictionary_ranges() (in module phievo.Networks.mutation)

 	save_restart_file() (phievo.Populations_Types.evolution_gillespie.Population method)

 	scatter_pareto_accross_generations() (phievo.AnalysisTools.Simulation.Genealogy method)

 	search_ancestors() (phievo.AnalysisTools.Simulation.Genealogy method)

 	Seed (class in phievo.AnalysisTools.Simulation)

 	Seed_Pareto (class in phievo.AnalysisTools.Simulation)

 	set_center() (phievo.Networks.PlotGraph.Components.Edge method)

 	(phievo.Networks.PlotGraph.Components.Node method)

 	set_node_size() (phievo.Networks.PlotGraph.Graph.Graph method)

 	setReceiveEdge() (phievo.Networks.PlotGraph.Components.Edge method)

 	short_label() (in module phievo.Networks.lovelyGraph)

 	show_fitness() (phievo.AnalysisTools.Simulation.Seed method)

 	(phievo.AnalysisTools.Simulation.Seed_Pareto method)

 	(phievo.AnalysisTools.Simulation.Simulation method)

 	
 	Simulation (class in phievo.AnalysisTools.Simulation)

 	single_comparison() (in module phievo.Populations_Types.pareto_population)

 	smoothing() (in module phievo.AnalysisTools.main_functions)

 	sort_networks() (phievo.AnalysisTools.Simulation.Genealogy method)

 	Species (class in phievo.Networks.classes_eds2)

 	Square (class in phievo.Networks.PlotGraph.Components)

 	store_to_pickle() (phievo.Networks.classes_eds2.Network method)

 	stored_generation_indexes() (phievo.AnalysisTools.Simulation.Seed method)

 	(phievo.AnalysisTools.Simulation.Simulation method)

 	storing() (phievo.Populations_Types.evolution_gillespie.Population method)

 	string_param() (phievo.Networks.classes_eds2.Node method)

 	(phievo.Networks.CorePromoter.CorePromoter method)

 	(phievo.Networks.TFHill.TFHill method)

 	(phievo.Networks.classes_eds2.TModule method)

T

 	
 	Tags_Species (phievo.Networks.classes_eds2.Species attribute)

 	TFHill (class in phievo.Networks.TFHill)

 	tgeneration (phievo.Populations_Types.evolution_gillespie.Population attribute)

 	threshold (phievo.Networks.Phosphorylation.Phosphorylation attribute)

 	title (phievo.Networks.classes_eds2.Network attribute)

 	
 	TModule (class in phievo.Networks.classes_eds2)

 	track_changing_variable() (in module phievo.Networks.deriv2)

 	track_variable() (in module phievo.Networks.deriv2)

 	transcription_deriv_inC() (in module phievo.Networks.TFHill)

 	TriangleDown (class in phievo.Networks.PlotGraph.Components)

 	TriangleUp (class in phievo.Networks.PlotGraph.Components)

U

 	
 	update_default_colormap() (in module phievo.AnalysisTools.palette)

 	
 	update_fitness() (phievo.Populations_Types.evolution_gillespie.Population method)

 	(phievo.Populations_Types.pareto_population.pareto_Population method)

V

 	
 	verify_IO_numbers() (phievo.Networks.classes_eds2.Network method)

W

 	
 	workplace_dir (in module phievo.Networks.deriv2)

 	
 	write_id() (phievo.Networks.classes_eds2.Network method)

 	write_program() (in module phievo.Networks.deriv2)

 _images/p2_response.png
oooooooo
===========

_static/ajax-loader.gif

_images/lac_operon_presentation.png
The /ac Operon and its Control Elements

+1

lacl cap P lO lacZ lacY lacA genes
binding 3 DNA
site

messenger RNA

CAP protein RNA polymerase

M Low glucose
> Lactose available

Repressor protein

. High glucose

> Lactose unavailable
M . Low glucose

> Lactose unavailable

CAP P O High glucose
» binding > G Lactose available

site

_images/networks.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 φ-evo documentation

 		
 Install φ-evo

 		
 install Anaconda

 		
 install the package

 		
 Install gcc on windows

 		
 Install gcc on mac osx

 		
 Install pygraphviz

 		
 run_evolution.py script

 		
 Analyse notebook

 		
 Test your installation

 		
 Create a new project

 		
 Presentation

 		
 An algorithm overview

 		
 Network components

 		
 Species

 		
 Interaction

 		
 TModule

 		
 Population & Evolution

 		
 Elite strategy

 		
 Pareto evolution

 		
 Results

 		
 Modelization & Integration

 		
 TModule and gene production

 		
 Degradation

 		
 Phosphorylation

 		
 Protein-Protein-Interaction (PPI)

 		
 Create a new project

 		
 Build a network manually

 		
 Run a simulation

 		
 initialization.py

 		
 fitness.c

 		
 init_history.c

 		
 input.c

 		
 Launching a run

 		
 Restart an evolution

 		
 Pareto evolution

 		
 Simulation parameters

 		
 Kinetic parameters (dictionary_ranges)

 		
 Mutation parameters (dictionary_mutation)

 		
 General simulation parameters (prmt)

 		
 Restart parameters (prmt[“restart”])

 		
 Results and Analysis Tools

 		
 Organization of the results

 		
 Analysis Tools

 		
 custom_plot

 		
 plot_fitness

 		
 get_best_net

 		
 get_backup_net

 		
 stored_generation_indexes

 		
 Read a network from the pickle file

 		
 Running a network’s dynamics

 		
 Plotting the results of a dynamics

 		
 Draw a network’s layout

 		
 Modifying an existing network

 		
 Storing and retrieving network

 		
 Notebook

 		
 Creating a custom module

 		
 Examples

 		
 Examples of projects

 		
 Examples of seeds

 		
 Hox pareto

 		
 References

 		
 A simple example: the lactose operon

 		
 Description of the biological problem

 		
 Implementation in the algorithm

 		
 Remark

 		
 A word about fitness

 		
 How to read and interpret results

 		
 Geometry

 		
 New interactions

 		
 Create a new interaction

 		
 Imports

 		
 Define a new type of species

 		
 Define the Methyl class

 		
 Handling the mutation

 		
 number_Methyl

 		
 new_Methyl

 		
 new_random_Methyl

 		
 random_Methyl

 		
 Methyl_deriv_inC

 		
 Bind the code to φ-evo

 		
 Known Bugs

 		
 Disabling scrolling bar in Analyse Run.ipynb

 		
 phievo package

 		
 Networks module

 		
 classes_eds2

 		
 Mutation

 		
 TFHill

 		
 PPI

 		
 Phosphorylation

 		
 Degradation

 		
 deriv2

 		
 lovelyGraph

 		
 PlotGraph

 		
 Graph

 		
 Graph components

 		
 Layout

 		
 Populations

 		
 Default evolution

 		
 Pareto evolution

 		
 Analysis tools

 		
 Simulation

 		
 Palette

 		
 extra_functions

_static/minus.png

_static/plus.png

_static/file.png

_static/logo.png

_static/up.png

_static/up-pressed.png

